Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 275))

Abstract

The noise in the front-end amplifiers sets a serious limitation in the accuracy of charge measurements with detectors that have no internal multiplication like gaseous, liquid and solid state ionisation chambers, solid state strip and pixel detectors and silicon drift chambers. The present paper, after discussing the limits set by noise and reviewing the noise properties of front-end components, analyzes the perspectives opened up by modern device and circuit technologies in low-noise detector applications. Particular attention will be devoted to the situations arising in elementary particle experiments of both accelerator and non-accelerator nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Radeka, Ann. Rev. Nucl. Part. Sci. 38 (1988) 217.

    Article  ADS  Google Scholar 

  2. E. Gatti, P.F. Manfredi, Processing the Signals from Silicon Detectors in Elementary Particles Physics. Rivista del Nuovo Cimento, 9 (1986).

    Google Scholar 

  3. V. Radeka, Nucl. Instr. and Meth. A 226 (1984) 209.

    ADS  Google Scholar 

  4. P.F. Manfredi, F. Ragusa, Nucl. Instrum. and Meth. A 235 (1985) 345.

    ADS  Google Scholar 

  5. V. Radeka, S. Rescia, Nucl. Instrum. and Meth. A 256 (1988) 228.

    ADS  Google Scholar 

  6. D.G. Cassel, Report of the Central Tracking Group, Proc. of 1986 Summer Study on the Physics of SSC. Snowmass, Colorado, (1986).

    Google Scholar 

  7. A. Asner et al., Proceeedings of ECFA. CERN Workshop on the Large Hadron Col lider in the LEP Tunnel. Lausanne, Genéve 1984, Vol. 1,49.

    Google Scholar 

  8. M. Giorgi, Paper presented at the 1st National Meeting on Perspectives in Electronics for Experiments at Future Accelerators. Isola del Giglio (Italy), May 26, 27 (1988).

    Google Scholar 

  9. W. Buttler et al., Nucl. Instrum. and Meth. A 288 (1990) 140.

    ADS  Google Scholar 

  10. P.F. Manfredi, V. Speziali, Nucl. Instrum. and Meth. A 279 (1989) 152.

    ADS  Google Scholar 

  11. G. Lutz et al., Nucl. Instrum. and Meth. A 277 (1989) 194.

    ADS  Google Scholar 

  12. E. Baldinger, W. Franzen, Advances in Electronics and Electron Physics 8, (1956) 225.

    Article  Google Scholar 

  13. E. Gatti, P.F. Manfredi, M. Sampietro, V. Speziali, Suboptimal Filtering of 1/f-noise in Detector Charge Measurements to be published.

    Google Scholar 

  14. V. Radeka., Position Sensitive Semiconductor Detectors. Proceedings of a Woricshop Held at Feimilab. T. Ferbel Editor (1981) 21.

    Google Scholar 

  15. M. Bertolaccini., et al, Nucl. Instr. and Meth. A 264 (1988) 399.

    ADS  Google Scholar 

  16. M. Demicheli., et al., Nucl. Instr. and Meth. A 289 (1990) 418.

    ADS  Google Scholar 

  17. V. Radeka, Summary of Noise Relations for Liquid Argon Ion Chambers Calorimeter Notes. Brookhaven National Laboratory, 9 (1973).

    Google Scholar 

  18. E. Gatti, P.F. Manfredi, D. Marioli, Nucl. Instr. and Meth. 193 (1982) 539.

    Article  ADS  Google Scholar 

  19. P.F. Manfredi., et al. Nucl. Instr. Meth. A 274 (1989) 477.

    ADS  Google Scholar 

  20. J.P. Avondo et al., Nucl. Instr. and Meth. A 241 (1985) 107.

    ADS  Google Scholar 

  21. W. Sansen, Nucl. Instr. and Meth. A 253 (1987) 427.

    ADS  Google Scholar 

  22. P. Jarron, CMOS Front-End Electronics for Silicon Detectors: the Present and the Trends for the Future. Presented at 4th PISA Meeting on Advanced Detectors. La Biodola (Italyt), May 21–25, (1989).

    Google Scholar 

  23. E. Gatti, A. Hrisoho, P.F. Manfredi., IEEE Trans. Nucl. Sci. NS 30 (1) (1983) 319.

    Article  ADS  Google Scholar 

  24. D. Dorfan., Nucl. Instr. and Meth. A 279 (1989) 186.

    ADS  Google Scholar 

  25. G. Gola., G. Pessina., P.G. Rancoita, Fast FrontEnd Electronics for Experiments Using Silicon Calorimeters at SSC/LHC Colliders. Due to appear in Nucl. Instr. and Meth.

    Google Scholar 

  26. H.H. Williams, M. Newcomer, Private Communication.

    Google Scholar 

  27. H. Vogt., Nucl. Instr. and Meth. A 253 (1987) 439.

    ADS  Google Scholar 

  28. G. Lutz., et al., Nucl. Instr. and Meth. A 264 (1988) 391.

    ADS  Google Scholar 

  29. W. Buttler et al., A Microstrip Preamplifier System Based on a Low Noise Radiation Hard Innovative Technology. Presented at 4th Topical Seminar on Experimental Apparatus San Miniato, May 28-June 1st, (1990).

    Google Scholar 

  30. E. Gatti., et al., Nucl. Instr. and Meth. 226 (1984) 129.

    Article  ADS  Google Scholar 

  31. P. Rehak., E. Gatti, Nucl. Inst, and Meth. A 289 (1990) 410.

    ADS  Google Scholar 

  32. L. Striider., et al., Nucl. Instr. and Meth. A 288 (1990) 227.

    ADS  Google Scholar 

  33. V. Radeka., et al., IEEE Trans. Nucl. Sci. NS 35 (1) (1988) 155.

    Article  ADS  Google Scholar 

  34. V. Radeka., et al., IEEE. El. Dev. Letters 10, 2 (1989) 91.

    Article  ADS  Google Scholar 

  35. P. Rehak., et al., Nucl. Instr. and Meth. A 288 (1990) 168.

    ADS  Google Scholar 

  36. T. Walker., et al., Nucl. Instr. and Meth. 226 (1984) 200.

    Article  ADS  Google Scholar 

  37. R. Hoffmann., et al., Nucl. Instr. and Meth. 226 (1984) 196.

    Article  ADS  Google Scholar 

  38. S. Kleinfelder., et al., IEEE Trans. Nucl. Sci. NS 35 (1) (1988) 171.

    Article  ADS  Google Scholar 

  39. E. Beuville., et al., Nucl. Instr. and Meth. A 288 (1990) 157.

    ADS  Google Scholar 

  40. G. Lutz., et al., Nucl. Instr. and Meth. A 263 (1988) 163.

    ADS  Google Scholar 

  41. K. Kandiah., Nucl. Instr. and Meth. A 288 (1990) 150.

    ADS  Google Scholar 

  42. D. Marioli., P.F. Manfredi., P. Massetti., Nucl. Instr. and Meth. A 269 (1988) 109.

    ADS  Google Scholar 

  43. D.V. Camin., Nucl. Instr. and Meth. A 277 (1989) 204.

    ADS  Google Scholar 

  44. A. Alessandrello et al., Low Noise GaAs Charge Sensitive Preamplifier for Low Temperature Particle Detectors. Presented at 1989 Nucl. Sci, Symposium, San Francisco, 17.19 Jan. (1990). To be published in IEEE Trans. Nucl. Sci.

    Google Scholar 

  45. D.V. Camin, Private Communication.

    Google Scholar 

  46. V. Ferrari, P.F. Manfredi, V. Speziali, Gamma radiation effects on the electric proper ties of electronic components of monolithic circuits. First Trilateral Meeting on Radiation Chemistry and Physics of Solids. Pavia, November 710, (1988).

    Google Scholar 

  47. Kraner et al., Radiation Damage Studies on Hybrid Preamplifiers. Preliminary Report, Brookhaven National Laboratory, March (1990).

    Google Scholar 

  48. J.H. Stephen, IEEE Trans. Nucl. Sci. NS. 33, 6 (1986) 1465.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Manfredi, P.F., Speziali, V. (1991). Noise Limits in Detector Charge Measurements. In: Ferbel, T. (eds) Techniques and Concepts of High-Energy Physics VI. NATO ASI Series, vol 275. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6006-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6006-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6008-7

  • Online ISBN: 978-1-4684-6006-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics