Advertisement

Calorimetry in High Energy Physics

  • Richard Wigmans
Part of the NATO ASI Series book series (NSSB, volume 275)

Abstract

Experimental particle physicists study the fundamental structure of matter with a variety of approaches, which may be subdivided in two classes: accelerator and non-accelerator experiments. Accelerator experiments have the advantage of well-controlled experimental circumstances, non-accelerator experiments offer the possibility of studying processes that are not accessible to the available accelerator technology.

Keywords

Energy Resolution ZEUS Collaboration Hadron Calorimeter Shower Particle Shower Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.S. Tsai, Rev. Mod. Phys. 46 (1974) 815.ADSCrossRefGoogle Scholar
  2. 2.
    E. Storm and H.I. Israel, Nucl. Data Tables 7 (1970) 565.ADSCrossRefGoogle Scholar
  3. 3.
    L. Pages et al., Atomic Data 4 (1972) 1.ADSCrossRefGoogle Scholar
  4. 4.
    W.R. Nelson, H. Hirayama and D.W.O. Rogers, The EGS4 Code System, Stanford, SLAG Report-165 (1985).Google Scholar
  5. 5.
    L. Landau and I. Pomeranchuk, Doklady Akad. Nauk. SSSR 92, No. 3 (1953) 535.MATHGoogle Scholar
  6. 6.
    A.B. Migdal, Phys. Rev. 103 (1956) 1811.ADSMATHCrossRefGoogle Scholar
  7. 7.
    T. Yuda, Nucl. Instr. and Meth. 73 (1969) 301.ADSCrossRefGoogle Scholar
  8. 8.
    B. Rossi., High-Energy Particles (Prentice Hall, Englewood Cliffs, NJ, 1952), p. 16ff.Google Scholar
  9. 9.
    R. Kopp et al., Z. Phys. C28 (1985)171.ADSGoogle Scholar
  10. 10.
    T. Akesson., et al., Nucl. Instr. Meth. A262 (1987) 243.ADSGoogle Scholar
  11. 11.
    C. Leroy et al, Nucl. Instr. and Meth. A252 (1986) 4.ADSGoogle Scholar
  12. 12.
    M.G. Catanesi et al., Nucl. Instr. and Meth. A260 (1987) 43.ADSGoogle Scholar
  13. 13.
    R. Wigmans, Nucl. Instr. and Meth. A259 (1987) 389.ADSGoogle Scholar
  14. 14.
    R. Wigmans, Energy Loss of Particles in Dense Matter — Calorimetry, Proc. of the ICFA School on Instrumentation in Elementary Particle Physics, Trieste, 1987, eds. C.W. Fabjan and J.E. Pilcher (World Scientific, Singapore, 1988).Google Scholar
  15. 15.
    See for example Y.K. Akimov, Scintillator Counters in High Energy Physics, Academic Press, 1965.Google Scholar
  16. 16.
    D.F. Anderson and D.C. Lamb, Nucl. Instr. and Meth. A265 (1988) 440.ADSGoogle Scholar
  17. 17.
    R.C. Munoz et al., J. Chem. Phys. 85 (1986) 1104.ADSCrossRefGoogle Scholar
  18. 18.
    R. Wigmans, Calorimetry at the SSC, Proc. of the Workshop on Experiments, Detectors and Experimental Areas for the Supercollider, Berkeley, 1987, eds. R. Donaldson and M.G.D. Gilchriese (World Scientific, Singapore, 1988), p.608.Google Scholar
  19. 19.
    H. Brückmann., et al., Nucl. Instr. and Meth. A263 (1988) 136.ADSGoogle Scholar
  20. 20.
    J.E. Brau and T.A. Gabriel, Nucl. Instr. and Meth. A238 (1985) 489.ADSGoogle Scholar
  21. 21.
    R. Wigmans, Nucl. Instr. and Meth. A265 (1988) 273.ADSGoogle Scholar
  22. 22.
    H. Abramowicz., et al., Nucl. Instr. and Meth. 180 (1981) 429.ADSCrossRefGoogle Scholar
  23. 23.
    M. de Vincenzi et al., Nucl. Instr. and Meth. A243 (1986) 348.ADSGoogle Scholar
  24. 24.
    C.W. Fabjan and W.J. Willis, in: Proc. of the Calorimeter Workshop, FNAL, Batavia, 111., 1975, ed. M. Atac, p. 1; C.W. Fabjan et al., Nucl. Instr. and Meth. 141 (1977) 61.Google Scholar
  25. 25.
    H. Tiecke (The ZEUS Calorimeter Group), Nucl. Instr. and Meth. A277 (1989) 42.Google Scholar
  26. 26.
    R. Wigmans, Signal equalization and energy resolution for uranium/silicon hadron calorimeters, Report NIKHEF Amsterdam, NIKHEF-H/87–13 (1987).Google Scholar
  27. 27.
    E. Borchi et al., Silicon sampling hadronic calorimetry: A tool for experiments at the next generation of colliders, preprint CERN-EP/89–28 (1989).Google Scholar
  28. 28.
    HI Calorimeter Group, Performance of a Pb-Cu Liquid Argon Calorimeter with an Iron Streamer Tube Tail Catcher, preprint DESY 88–073, (1988).Google Scholar
  29. 29.
    G. d’Agostini et al., Nucl. Instr. and Meth. A274 (1989) 134.ADSGoogle Scholar
  30. 30.
    M. Abolins et al., Hadron and Electron Response of Uranium/Liquid Argon Calorimeter Modules for the DO Detector, Brookhaven Report BNL-42336 (1989).Google Scholar
  31. 31.
    D. Hitlin, SLD liquid argon prototype tests, Proc. of the Workshop on Compensated Calorimetry, Pasadena, 1985, CALT-68–1305.Google Scholar
  32. 32.
    D. Gilzinger et al., The HELIOS Uranium Liquid Argon Calorimeter, in preparationGoogle Scholar
  33. 33.
    Y. Galaktionov et al., Nucl. Instr. and Meth. A251 (1986) 258.ADSGoogle Scholar
  34. 34.
    M. Pripstein (WALIC Collaboration), Requirements for the Development of Warm Liquid Calorimetry, Proc. of the Workshop on Future Directions in Detector R&D for Experiments at pp Colliders, Snowmass, Co., 1988, and private communication.Google Scholar
  35. 35.
    E. Radermacher (UA1 Collaboration), First results from a UAl Uranium- TMP calorimeter module, preprint CERN-EP/89–01 (1989).Google Scholar
  36. 36.
    E. Bernardi et al., Nucl. Instr. and Meth. A262 (1987) 229.ADSGoogle Scholar
  37. 37.
    E.B. Hughes et al., Nucl. Instr. and Meth. 75 (1969) 130.ADSCrossRefGoogle Scholar
  38. 38.
    A. Benvenuti et al., Nucl. Instr. and Meth. 125 (1975) 447.ADSCrossRefGoogle Scholar
  39. 39.
    R.M. Brown et al., IEEE Trans. Nucl. Sci. NS-32 (1985) 736;ADSCrossRefGoogle Scholar
  40. P.W. Jeffreys et al., A Phototriode Instrumented Lead Glass Calorimeter for use in the Strong Magnetic Field of OPAL, Rutherford Lab report RAL-85–058 (1985).Google Scholar
  41. 40.
    U. Amaldi, Phys. Scripta 23 (1981) 409.ADSCrossRefGoogle Scholar
  42. 41.
    R. Wigmans, The Spaghetti Calorimeter Project at CERN, Proc. of the Workshop on Future Directions in Detector R&D for Experiments at pp Colliders, Snowmass, Co., 1988.Google Scholar
  43. 42.
    Y. Chan et al., IEEE Trans. Nucl. Sci. NS-25 (1978) 333.ADSCrossRefGoogle Scholar
  44. 43.
    H. Grassmann et al., Nucl. Instr. and Meth. 228 (1985) 323.ADSCrossRefGoogle Scholar
  45. 44.
    J.A. Bakker et al., Study of the Energy Calibration of a High Resolution EM Calorimeter, CERN-EP/89–16 (1989).Google Scholar
  46. 45.
    M. Laval et al., Nucl. Instr. and Meth. 206 (1983) 169.CrossRefGoogle Scholar
  47. 46.
    D.F. Anderson et al., Nucl. Instr. and Meth. 228 (1985) 33.ADSGoogle Scholar
  48. 47.
    R. Boucher et al., Nucl. Instr. and Meth. A267 (1988) 69.ADSGoogle Scholar
  49. 48.
    C.L. Woody and D.F. Anderson, Nucl. Instr. and Meth. A265 (1988) 291.ADSGoogle Scholar
  50. 49.
    K.L. Giboni et al., Nucl. Instr. and Meth. 225 (1984) 579.ADSCrossRefGoogle Scholar
  51. 50.
    T. Doke et al., Nucl. Instr. and Meth. A237 (1985) 475.ADSGoogle Scholar
  52. 51.
    E. Aprile et al., Nucl. Instr. and Meth. A261 (1987) 519.ADSGoogle Scholar
  53. 52.
    V.M. Aulchenko et al. (KEDR Collaboration), paper submitted to the 24th Int. Conf. on High-Energy Physics, Munich, 1988; see also D.G. Hitlin, Proc. of the 24th Int. Conf. on High-Energy Physics, Munich, 1988 (Springer, Berlin, 1989), p. 1187.Google Scholar
  54. 53.
    M. Chen et al., Nucl. Instr. and Meth. A267 (1988) 43.ADSGoogle Scholar
  55. 54.
    H. Burkhardt et al., Nucl. Instr. and Meth. A268 (1988) 116.ADSGoogle Scholar
  56. 55.
    P. Sonderegger, Nucl. Instr. and Meth. A257 (1987) 523, and references therein.ADSGoogle Scholar
  57. 56.
    G.A. Akopdjanov et al., Nucl. Instr. and Meth. 140 (1977) 441.ADSCrossRefGoogle Scholar
  58. 57.
    T. Kondo and K. Niwa, Electromagnetic shower size and containment at high energies, paper contributed to the Summer Study on the Design of the Superconducting Super Collider, Snowmass, Co. (1984).Google Scholar
  59. 58.
    I. Stumer and P. Yepes (HELIOS Collaboration), private communication (1989).Google Scholar
  60. 59.
    E. Gabathuler et al., Nucl. Instr. and Meth. 157 (1978) 47.ADSCrossRefGoogle Scholar
  61. 60.
    T. Akesson et al., Proc. Workshop on Physics at Future Accelerators, La Thuile and Geneva, 1987, ed. J. Mulvey, CERN 87–07, vol. I, p. 174 (1987).Google Scholar
  62. 61.
    A.L. Sessoms et al., Nucl. Instr. and Meth. 161 (1979) 371.ADSCrossRefGoogle Scholar
  63. 62.
    Y. Muraki et al., Radial and longitudinal behaviour of nuclear electromagnetic cascade showers induced by 300 GeV protons in lead and iron absorber, Univ. of Tokyo report ICR 117–84-6 (1984).Google Scholar
  64. 63.
    A.N. Diddens et al., Nucl. Instr. and Meth. 178 (1980) 27.ADSCrossRefGoogle Scholar
  65. 64.
    T. Akesson et al., Nucl. Instr. and Meth. A241 (1985) 17.ADSGoogle Scholar
  66. 65.
    F. Binon et al., Nucl. Instr. and Meth. 188 (1981) 507.ADSCrossRefGoogle Scholar
  67. 66.
    D. Bogert et al., IEEE Trans Nucl. Sci. NS-29 (1982) 336.Google Scholar
  68. 67.
    J.P. DeWulf et al., Nucl. Instr. and Meth. A252 (1986) 443.ADSGoogle Scholar
  69. 68.
    C. DeWinter et al., Experimental results obtained from a low-Z fine-grained electromagnetic calorimeter, preprint CERN-EP/88–81 (1988).Google Scholar
  70. 69.
    I. Abt et al., Nucl. Instr. and Meth. 217 (1983) 377.CrossRefGoogle Scholar
  71. 70.
    A.V. Barns et al., Phys. Rev. Lett. 37 (1970) 76. See also T. Ferbel in: Understanding the Fundamental Constituents of Matter, ed. A. Zichichi (Plenum Press, New York, NY, 1978).ADSCrossRefGoogle Scholar
  72. 71.
    J.A. Appel et al., Nucl. Instr. and Meth. 127 (1975) 495.ADSCrossRefGoogle Scholar
  73. 72.
    D. Hitlin et al., Nucl. Instr. and Meth. 137 (1976) 225.ADSCrossRefGoogle Scholar
  74. 73.
    R. Engelmann et al., Nucl. Instr. and Meth. 216 (1983) 45.CrossRefGoogle Scholar
  75. 74.
    U. Micke et al., Nucl. Instr. and Meth. 221 (1984) 495.CrossRefGoogle Scholar
  76. 75.
    C. DeWinter et al., An Electron-Hadron Separator for Digital Sampling Calorimeters, preprint CERN-EP/88–87 (1988).Google Scholar
  77. 76.
    J. Cobb et al., Nucl. Instr. and Meth. 158 (1979) 93.ADSCrossRefGoogle Scholar
  78. 77.
    J. Krüger (ed.), The ZEUS Detector, Status Report 1987, Report PRC 87–02, DESY (1987).Google Scholar
  79. 78.
    C. Gossling, Large Area Silicon Detectors, Proc. 24th Int. Conf. on High-Energy Physics, Munich 1988 (Springer, Berlin, 1989), p. 1208.Google Scholar
  80. 79.
    L. Baum et al., Proc. Calorimeter Workshop, FNAL, Batavia, 111., 1975, ed. M. Atac, p. 295.Google Scholar
  81. 80.
    A. Grant, Nucl. Instr. and Meth. 131 (1975) 167.ADSCrossRefGoogle Scholar
  82. 81.
    M. Holder et al., Nucl. Instr. and Meth. 151 (1978) 69.ADSCrossRefGoogle Scholar
  83. 82.
    R. Leuchs, Messung des hadronischen Untergrundes bei der Identifizierung von Myonen, Tech. Univ. Aachen, 1982; K. Eggert (UA1 Collaboration), private communication.Google Scholar
  84. 83.
    F.S. Merritt et al., Hadron Shower Punch Through for Incident Hadrons of Momentum 15, 25, 50, 100, 200 and 300 GeV/c, preprint Enrico Fermi Institute, ER 13065–41 (1985).Google Scholar
  85. 84.
    K. Eggert et al., Nucl. Instr. and Meth. 176 (1980) 217.ADSCrossRefGoogle Scholar
  86. 85.
    F. Abe.: et al., Nucl. Instr. and Meth. 271 (1988) 387.ADSCrossRefGoogle Scholar
  87. 86.
    Technical Proposal of the L3 Collaboration, CERN/LEPC/83–05 (1983).Google Scholar
  88. 87.
    W.J. Willis., and K. Winter.: in Physics with very high energy colliding beams, CERN 76– (1976), p. 131.Google Scholar
  89. 88.
    G. Arnison.: et al., (UA1 Collab.), Phys. Lett. 139B (1984) 115.ADSGoogle Scholar
  90. 89.
    P. Bagnaia.: et al. (UA2 Collab.), Z. Phys. C24 (1984) 1.ADSGoogle Scholar
  91. 90.
    P. Jenni.: (UA2 Collab.), Nucl. Phys. B3 (Proc. Suppl.) (1988) 341.Google Scholar
  92. 91.
    L. Mandelli.: (UA2 Collab.), UA2 Results for the 1987 Run, preprint CERN- EP/88–182 (1988).Google Scholar
  93. 92.
    E. Bernardi.: et al Nucl. Instr. and Meth. A262 (1987) 229.ADSGoogle Scholar
  94. 93.
    F.G. Hartjes.: and R. Wigmans.: Nucl. Instr. and Meth. A277 (1989) 379.ADSGoogle Scholar
  95. 94.
    R. DeSalvo.: et al., Nucl. Instr. and Meth. A279 (1989) 467.ADSGoogle Scholar
  96. 95.
    D. Acosta.: et al., Nucl. Instr. and Meth. A294 (1990) 193.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Richard Wigmans
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations