Introduction to the Physics of Particle Accelerators

  • Robert Siemann
Part of the NATO ASI Series book series (NSSB, volume 275)


Progress in science is closely connected to the capabilities of instruments. Accelerators and detectors are the instruments of particle physics; these lectures are devoted to the former. Examples of relationship between accelerator science and particle physics are the discovery of the W and Z bosons which was a result of the development of stochastic cooling and the extensive studies of c− and b-quarks have been critically dependent on understanding and improvement of e+e storage rings. In the future work on superconducting magnets could lead to the discovery of the t-quark and the Higgs.


Storage Ring Linear Collider Persistent Current Nonlinear Field Simple Harmonic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edwin M. McMillan, Phys. Rev. 68, 143(1945).ADSCrossRefGoogle Scholar
  2. 2.
    E. Courant and H. Snyder, Annals of Physics 3, 27 (1958).CrossRefGoogle Scholar
  3. 3.
    Site-Specific Conceptual Design for the SSC, ed. D. Matthews (1990).Google Scholar
  4. 4.
    Herbert Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Reading, Mass. (1959).Google Scholar
  5. 5.
    An excellent reference for electron storage rings is M. Sands, The Physics of Electron Storage Rings - An Introduction, SLAC-121 (SLAC, 1970).Google Scholar
  6. 6.
    T. Weiland, CERN/ISR-TH/80–07 (CERN, 1980).Google Scholar
  7. 7.
    R. H. Siemann, Proc. of the 17th SLAC Summer Institute, ed. E. C. Brennan, p. 263 (1990).Google Scholar
  8. 8.
    R. H. Siemann, AIP Conf. Proc. 127, 368 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    W. K. H. Panofsky and W. A. Wentzel, Rev. Sci. Inst. 27,967 (1956).ADSCrossRefGoogle Scholar
  10. 10.
    K. L. F. Bane, IEEE Trans. Nucl. Sci. NS-32, 3565 (1985).Google Scholar
  11. 11.
    V. E. Balakin, A. V. Novokhatsky, and V. P. Smirnov, Proc. of 12th Int. Conf. on High Energy Accel., ed. F. Cole, R. Donaldson, p. 119 (1983).Google Scholar
  12. 12.
    P. B. Wilson, SLAC-PUB-3674, (SLAC, 1985).Google Scholar
  13. 13.
    W. Schnell, CERN-LEP-RF/87–24, (CERN, 1987).Google Scholar
  14. 14.
    R. D. Kohaupt, Proc. of the 11th Int. Conf. on High Energy Accel., ed W. S. Newman, p. 562 (1980).Google Scholar
  15. 15.
    This analysis comes from A. Chao, AIP Conf. Proc. 105, 353 (1983).Google Scholar
  16. 16.
    K. Robinson, CEAL Report TM-183 (CEA, 1969).Google Scholar
  17. 17.
    Klaus G. Steffen, High Energy Beam Optics, Interscience Publishers, New York (1965).Google Scholar
  18. 18.
    K. L. Brown and R. V. Servranckx, AIP Conf. Proc. 127, 62 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    R. A. Erickson, AIP Conf. Proc. 184,1554 (1989).ADSGoogle Scholar
  20. 20.
    C. Pellegrini, Nuovo Cimento LXIV, 447 (1969).ADSGoogle Scholar
  21. 21.
    This analysis is from R. Talman, AIP Conf. Proc. 153, 835 (1987).Google Scholar
  22. 21a.
    H. E. Fisk et al, Proc. of the 1984 Summer Study on the Design and Utilization of the SSC, edited by R. Donalson and J. G. Morfin, p. 329 (1984).Google Scholar
  23. 22.
    R. P. Johnson, Proc. of the 1987 IEEE Accel. Conf., ed. E. R. Lindstrom and L. S. Taylor, p. 8 (1987).Google Scholar
  24. 23.
    SSC Conceptual Design, ed. J. D. Jackson (1986).Google Scholar
  25. 24.
    M. Bassetti and G. Erskine, CERN-ISR-TH/80–06, (CERN, 1980).Google Scholar
  26. 25.
    R. Hollebeek, Nucl. Inst. & Methods 184, 333 (1981).ADSCrossRefGoogle Scholar
  27. 26.
    P. Chen and K. Yokoya, Phys. Rev. D38, 987 (1988).ADSGoogle Scholar
  28. 27.
    M. Breidenbach et al., SLC Performance in 1991, (SLAC, 1990).Google Scholar
  29. 28.
    P. Chen, AIP Conf. Proc. 184, 633 (1989).ADSCrossRefGoogle Scholar
  30. 29.
    T. Himel and J. Siegrist, AIP Conf. Proc. 130, 602 (1985).ADSCrossRefGoogle Scholar
  31. 30.
    R. Blankenbecler and S. D. Drell, Phys. Rev. D36, 277 (1987).ADSGoogle Scholar
  32. 31.
    R. Palmer, SLAC-PUB-4707 (SLAC, 1989).Google Scholar
  33. 32.
    R. Schmidt and M. Harrison, to be published in Proc. of 1990 European Part. Accel. Conf.Google Scholar
  34. 33.
    L. Evans, AIP Conf. Proc. 127, 243 (1985).ADSCrossRefGoogle Scholar
  35. 34.
    J. Seeman, Nonlinear Dynamics Aspects of Particle Accelerators. Springer-Verlag, Berlin, edited by J. M. Jowett, S. Turner and M. Month, p. 121 (1986).Google Scholar
  36. 35.
    A. Piwinski, IEEE Trans. Nucl. Sci. NS-24, 1408 (1977).ADSCrossRefGoogle Scholar
  37. 36.
    K. Oide and K. Yokoya, Phys. Rev. A40, 315 (1989).ADSGoogle Scholar
  38. 37.
    F. M. Izrailev and I. B. Vasserman, 7th All Union Conf. on Charged Part. Accel, p. 288 (1981).Google Scholar
  39. 38.
    D. Rice, Part. Accel. 31, 1315 (1990).Google Scholar
  40. 39.
    S. Krishnagopal and R. Siemann, Phys. Rev. D41, 2312 (1990).ADSGoogle Scholar
  41. 40.
    S. Krishnagopal and R. Siemann, Proc. of the 1989 IEEE Part. Accel. Conf., edited by F. Bennett and J. Kopta, p. 836 (1989).CrossRefGoogle Scholar
  42. 41.
    S. Peggs and R. Talman, Phys. Rev. D24, 2379 (1983).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert Siemann
    • 1
  1. 1.Newman Laboratory of Nuclear StudiesCornell UniversityIthacaUSA

Personalised recommendations