Effects of Pinacidil, Cromakalim, and Nicorandil on Potassium Currents of Rat Basilar Artery Smooth Muscle

  • He Zhang
  • Norman Stockbridge
  • Bryce Weir
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Pinacidil, nicorandil, and cromakalim are antihypertensive agents, which relax peripheral vascular smooth muscle by hyperpolarizing smooth muscle cells towards the potassium equilibrium potential (Weir and Weston, 1986; Southerton et al., 1988). These drugs increase 86Rb+ or 42K+ efflux and reverse or attenuate the effects of a wide variety of vasoconstrictors (Hamilton et al., 1989). Patch-clamping studies show that these drugs act on several types of potassium channels. In cardiac myocytes, nicorandil (Hiraoka and Fan, 1989), pinacidil (Escande et al., 1989), and cromakalim (Sanguinetti et al., 1988) usually activate a background, time- and voltage-independent potassium current which is blocked by physiological levels of ATP. In arterial and venous smooth muscles, these agents activate either large-conductance calcium-dependent potassium channels (Gelband et al., 1989) or ATP-dependent potassium channels (Standen et al., 1989). Nicorandil has a dual action, a stimulation of guanylate cyclase and an increase in potassium conductance (Newgreen et al., 1988).


Potassium Channel Basilar Artery Potassium Current Cerebral Vasospasm Single Channel Recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnfelt-Rønne, I., 1988, Pinacidil, Preclinical investigations, Drugs, 36: 4.PubMedCrossRefGoogle Scholar
  2. Arena, J. P. and Kass, R. S., 1989, Activation of ATP-sensitive K channels in heart cells by pinacidil: dependence on ATP, Am. J. Physiol., 257: H2092.Google Scholar
  3. Beech, D. J. and Bolton, T. B., 1989, Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein, Br. J. Pharmacol., 98: 851.PubMedGoogle Scholar
  4. Economos, D., Peyrow, M., Escande, D., and Bkaily, G., 1990, Effects of K+ openers, pinacidil and BRL 34915 on K+ current of aortic single cells, Biophys. J., 57: 508a.Google Scholar
  5. Escande, D., Thüringer, D., Leguern, S., and Cavero, I., 1988, The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes, Biochem. Biophys. Res. Commun., 154: 620.PubMedCrossRefGoogle Scholar
  6. Escande, D., Thüringer, D., Le Guern, S., Courteix, J., Laville, M, and Cavero, I., 1989, Potassium channel openers act through activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes, Pflügers Arch., 414: 669.PubMedCrossRefGoogle Scholar
  7. Fujiwara, S. and Kuriyama, H., 1983, Effects of agents that modulate potassium permeability in smooth muscle cells of the guinea-pig basilar artery, Br. J. Pharmacol., 79: 23.PubMedGoogle Scholar
  8. Gelband, C. H., Lodge, N. J., and van Breemen, C., 1989, A Ca2+-activated K+ channel from rabbit aorta: Modulation by cromakalim, Eur. J. Pharmacol., 167: 201.PubMedCrossRefGoogle Scholar
  9. Gelband, C. H., McCollough, J. R., and van Breemen, C., 1990, Modulation of vascular Ca2+-activated K+ channels by cromakalim, pinacidil, and glyburide, Biophys. J., 57: 509a.Google Scholar
  10. Grant, T. L. and O’Hara, K., 1989, Comparison of the effects of cromakalim (BRL 34915) on rabbit isolated basilar artery and thoracic aorta, Br. J. Pharmacol., 98: 721p.Google Scholar
  11. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391: 85.PubMedCrossRefGoogle Scholar
  12. Hamilton, T. C. and Weston, A. H., 1989, Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle, Gen. Pharmacol., 20: 1.PubMedCrossRefGoogle Scholar
  13. Harder, D. R., Dernbach, P., and Waters, A., 1987, Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog, J. Clin. Invest., 80: 875.PubMedCrossRefGoogle Scholar
  14. Hermsmeyer, R. K.. 1988, Pinacidil actions on ion channels in vascular muscle, J. Cardiovasc. Pharmacol., 12(Suppl. 2): S17.PubMedCrossRefGoogle Scholar
  15. Hille, B., 1984, “Ionic Channels of Excitable Membranes”, Sinauer Assoc. Inc., Sunderland, MA.Google Scholar
  16. Hiraoka, M. and Fan, Z., 1989, Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes, J. Pharmacol. Exp. Ther., 250: 278.PubMedGoogle Scholar
  17. Hof, R. P., Quast, U., Cook, N. S., and Blarer, S., 1988, Mechanism of action and systemic and regional hemodynamics of the potassium channel activator BRL 34915 and its enantiomers, Circ. Res., 62: 679.PubMedGoogle Scholar
  18. Hu, S., Kim, H. S., and Weiss, G. B., 1990, Effects of BRL 34915 and P 1060 on the Ca++-activated K+ channel in rabbit portal vein cells, Biophys. J., 57: 307a.Google Scholar
  19. Kakei, M., Noma, A., and Shibasaki, T., 1985, Properties of adenosine triphosphate-regulated potassium channels in guinea-pig ventricular cells, J. Physiol., 363: 441.PubMedGoogle Scholar
  20. Kakei, M., Yoshinaga, M., Saito, K., and Tanaka, H., 1986, The potassium current activated by 2-nicotinamidoethyl nitrate (nicorandil) in single ventricular cells of guinea-pig, Proc. R. Soc. Lond. B., 229: 331.PubMedCrossRefGoogle Scholar
  21. Klöckner, U., Trieschmann, U., and Isenberg, G., 1989, Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells, Drug Res., 39: 120.Google Scholar
  22. Kusano, K., Barros, F., Katz, G., Garcia, M., Kaczorowski, G., and Reuben, J. P., 1987, Modulation of K channel activity in aortic smooth muscle by BRL 34915 and a scorpion toxin, Biophys. J., 51: 55a.CrossRefGoogle Scholar
  23. Newgreen, D. T., Bray, K. M., Southerton, J. S., and Weston, A. H., 1988, The relationship between K-channel opening and cGMP concentration in rat aorta, Pflügers Arch., 411: 198.Google Scholar
  24. Osterrieder, W., 1988, Modification of K+ conductance of heart cell membrane by BRL 34915, Naunyn-Schmied. Arch. Pharmacol., 337: 93.CrossRefGoogle Scholar
  25. Sanguinetti, M. C., Scott, A. L., Zingaro, G. J., and Siegl, P. K. S., 1988, BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle, Proc. Nat’l. Acad. Sci. U.S.A., 85: 8360.CrossRefGoogle Scholar
  26. Shibuya, M., Sukuki, Y., Takayasu, M., Asano, T., Harada, T., Ikegaki, I., Satoh, S., and Hidaka, H., 1988, The effects of intracellular calcium antagonist HA 1077 on delayed cerebral vasospasm in dogs, Acta Neurochir., 90: 53.CrossRefGoogle Scholar
  27. Southerton, J. S., Weston, A. H., Bray, K. M., Newgreen, D. T., and Taylor, S. G., 1988, The potassium channel opening action of pinacidil; studies using biochemical, ion flux and electrophysiological techniques, Naunyn-Schmied. Arch. Pharmacol., 338: 310.CrossRefGoogle Scholar
  28. Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science, 245: 177.PubMedCrossRefGoogle Scholar
  29. Stockbridge, N., 1987, EGTA, Comput. Biol. Med., 17: 299.PubMedCrossRefGoogle Scholar
  30. Stuenkel, E. L., 1989, Single potassium channels recorded from vascular smooth muscle cells, Am. J. Physiol., 257: H760.Google Scholar
  31. Toda, N., Nakajima, S., Miyazaki, M., and Ueda, M., 1985, Vasodilatation induced by pinacidil in dogs: comparison with hydralazine and nifedipine, J. Cardiovasc. Pharmacol., 7: 1118.PubMedCrossRefGoogle Scholar
  32. Weir, S. W. and Weston, A. H., 1986 Br. J. Pharmacol., 88: 121.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • He Zhang
    • 1
  • Norman Stockbridge
    • 1
  • Bryce Weir
    • 1
  1. 1.Department of SurgeryUniversity of AlbertaEdmontonCanada

Personalised recommendations