Time-Dependent Decrease in Ca2+-Sensitivity in “Phasic Smooth Muscle”

  • Hiroshi Ozaki
  • William T. Gerthoffer
  • Nelson G. Publicover
  • Kenton M. Sanders
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)

Abstract

Recent studies using the Ca2+-indicators, aequorin and fura-2, support the concept that increased intracellular Ca2+ ([Ca2+ ]i) leads to force development in smooth muscle (for reviews, see Karaki, 1989; Somlyo and Himpens, 1989). For example, in guinea-pig taenia caecum a close correlation exists between [Ca2+]i and muscle tension (Ozaki et al., 1988; Mitsui and Karaki, 1990). However, in some smooth muscles, the relationship between [Ca2+]i and force development appears to depend upon the method of stimulation. For a given increase in [Ca2+]i, agonists such as norepinephrine, histamine, prostaglandins, and endothelin in vascular smooth muscle (Morgan and Morgan, 1984; DeFeo and Morgan, 1985; Sato et al., 1988; Sakata et al., 1989; Mori et al., 1990; Ozaki et al., 1990a), and carbachol in trachea (Gerthoffer et al., 1990; Ozaki et al., 1990b) induce greater contractions than simple depolarization with elevated external K+. These findings suggest that the Ca2+-sensitivity of the contractile elements may be increased by certain agonists. Although the mechanism of Ca2+-sensitization has not been clarified, the agonist-induced activation of protein kinase C and subsequent phosphorylation of specific protein(s) may be involved.

Keywords

Histamine Prostaglandin Norepinephrine Acetylcholine Photolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeFeo, T. T. and Morgan, K. G., 1985, Calcium-force relationship as detected by aequorin in two different vascular smooth muscle of the ferret, J. Physiol., 369: 269.Google Scholar
  2. Gerthoffer, W. T., Murphey, K. A., and Gunst, S. J., 1989, Aequorin luminescence, myosin phosphorylation, and active stress in tracheal smooth muscle, Am. J. Physiol., 257: C1062.Google Scholar
  3. Golenhofen, K., 1976, Theory of P and T systems for calcium activation in smooth muscle, in: “Physiology of Smooth Muscle”, E. Bülbring and M. F. Shuba, eds., Raven Press, New York, p. 197.Google Scholar
  4. Golenhofen, K., 1981, Differentiation of calcium activation processes in smooth muscle using selective antagonists, in: “Smooth Muscle: An Assessment of Current Knowledge”, E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds., University of Texas Press, Austin, p. 157.Google Scholar
  5. Hartshorne D. J., 1987, Biochemistry of the contractile process in smooth muscle, in: “Physiology of Gastrointestinal Tract”, L. R. Johnson, ed., Raven Press, New York, p. 423.Google Scholar
  6. Himpens, B., Matthjis, G., and Somlyo, A. P., 1989, Desensitization to cytosolic Ca2+ and Ca2+ sensitivity in guinea-pig ileum and rabbit pulmonary artery, J. Physiol., 413: 489.PubMedGoogle Scholar
  7. Himpens, B. and Casteels, R., 1990, Different effects of depolarization and muscarinic stimulation on the Ca2+/force relationship during the contraction-relaxation cycle in the guinea-pig ileum, Pflügers Arch., 416: 28.PubMedCrossRefGoogle Scholar
  8. Ingebritsen, T. S. and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities, Eur. J. Biochem., 132: 255.PubMedCrossRefGoogle Scholar
  9. Ishihara, H., Martin, B. L., Brautigan, D. L., Karaki, H., Ozaki, H., Kato, Y., Fusetani, N., Watabe, S., Hashimoto, K., Uemura, D., and Hartshorne, D. J., 1989, Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity, Biochem. Biophys. Res. Commun., 159: 871.PubMedCrossRefGoogle Scholar
  10. Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol., 25: 593.CrossRefGoogle Scholar
  11. Karaki, H., 1989, Ca2+ localization and sensitivity in vascular smooth muscle, Trends Pharmacol. Sci., 10: 320.PubMedCrossRefGoogle Scholar
  12. Mitsui, M. and Karaki, H., 1990, Dual effects of carbachol on cytosolic Ca2+ and contraction in the intestinal smooth muscle, Am. J. Physiol., 258: C787.PubMedGoogle Scholar
  13. Morgan, J. P. and Morgan, K. G., 1984, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein,J. Physiol., 351: 312.Google Scholar
  14. Morgan, K. G. and Szurszewski, J. H., 1980, Mechanism of phasic and tonic actions of pentagastrin on canine gastric smooth muscle, J. Physiol., 301: 229.PubMedGoogle Scholar
  15. Mori, T., Yanagisawa, T., and Taira, N., 1990, Histamine increases vascular tone and intracellular calcium level using both intracellular and extracellular calcium in porcine coronary arteries, Jpn. J. Pharmacol., 52: 263.PubMedCrossRefGoogle Scholar
  16. Ozaki, H., Satoh, T., Karaki, H., and Ishida, Y., 1988, Regulation of metabolism and contraction by cytoplasmic calcium in the intestinal smooth muscle, J. Biol. Chem., 263: 14074.PubMedGoogle Scholar
  17. Ozaki, H., Ohyama, T., Sato, K., and Karaki, H., 1990a, Ca2+ dependent and independent mechanism of sustained contraction in vascular smooth muscle of rat aorta, Jpn. J. Pharmacol., 52: 509.PubMedCrossRefGoogle Scholar
  18. Ozaki, H., Kwon, S.-C, Tajimi, M., and Karaki, H., 1990b, Changes in cytosolic Ca2+ and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle, Pflügers Arch., 416: 351.PubMedCrossRefGoogle Scholar
  19. Ozaki, H., Stevens, R. J., Blondfield, D. P., Publicover, N. G., and Sanders, K. M., 1991, Simultaneous measurement of membrane potential, cytosolic Ca2+ and tension in intact smooth muscle, Am. J. Physiol., 260: C917.PubMedGoogle Scholar
  20. Rembold, C. M., 1989, Desensitization of swine arterial smooth muscle to transplasmalemmal Ca2+ influx, J. Physiol., 416: 273.PubMedGoogle Scholar
  21. Sakata, K., Ozaki, H., Kwon, S.-C, and Karaki, H., 1989, Effects of endothelin on the mechanical activity and cytosolic calcium levels of various types of smooth muscle, Br. J. Pharmacol., 98: 483.PubMedGoogle Scholar
  22. Sanders, K. M. and Publicover, N. G., 1989, Electrophysiology of the gastric musculature, in: “Handbook of Physiology, The Gastrointestinal System,” Vol I., S. G. Schultz and J. D. Wood., eds., The American Physiological Society, Bethesda, p. 187.Google Scholar
  23. Sato, K., Ozaki, H., and Karaki, H., 1988, Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura-2, J. Pharmacol. Exp. Ther., 246: 294.PubMedGoogle Scholar
  24. Somlyo, A. P. and Himpens, B., 1989, Cell calcium and its regulation in smooth muscle, FASEB J., 3: 2266.PubMedGoogle Scholar
  25. Somlyo, A. P. and Somlyo, A. V., 1990, Flash photolysis studies of excitation-contraction coupling, regulation and contraction in smooth muscle, Ann. Rev. Physiol., 52: 857.CrossRefGoogle Scholar
  26. Stewart, A. A., Ingebritsen, T. S., and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 5. Purification of and properties of a Ca2+-and calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle, Eur. J. Biochem., 132: 289.PubMedCrossRefGoogle Scholar
  27. Szurszewski, J. H., 1987, Electrical basis for gastrointestinal motility, in: “Physiology of Gastrointestinal Tract”, L. R., Johnson, ed., Raven Press, New York, p. 383.Google Scholar
  28. Vogalis, F., Publicover, N. G., Hume, J., and Sanders, K. M., 1991, Relationship between calcium current and cytosolic calcium concentration in canine gastric smooth muscle cells, Am. J. Physiol., 260: C1012.PubMedGoogle Scholar
  29. Yagi, S., Becker P. L., and Fay, F. S., 1988, Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurement on single cells, Proc. Natl. Acad. Sci. U.S.A., 85: 4109.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hiroshi Ozaki
    • 1
  • William T. Gerthoffer
    • 2
  • Nelson G. Publicover
    • 1
  • Kenton M. Sanders
    • 1
  1. 1.Departments of PhysiologyUniversity of Nevada School of MedicineRenoUSA
  2. 2.Departments of PharmacologyUniversity of Nevada School of MedicineRenoUSA

Personalised recommendations