Frequency Analysis of Skinned Indirect Flight Muscle From a Myosin Light Chain 2 Deficient Mutant of Drosophila Melanogaster with a Reduced Wing Beat Frequency

  • Mineo Yamakawa
  • Jeffrey Warmke
  • Scott Falkenthal
  • David Maughan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Muscle contraction is regulated by proteins associated with either the thick (myosin-containing) or thin (actin-containing) filaments. The relative importance of each set of regulatory proteins varies between muscle types (Adelstein and Eisenberg, 1980). One type of regulation, typical of smooth and non-muscle cells, involves phosphorylation of the regulatory light chain on myosin, while the other, typical of vertebrate striated muscle, involves Ca2+ binding to the troponin on actin.


Myosin Light Chain Flight Muscle Regulatory Light Chain Indirect Flight Muscle Stretch Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S. and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem., 49: 921.PubMedCrossRefGoogle Scholar
  2. Bendat, J. S. and Piersol, G., 1986, “Random data: analysis and measurement procedures”, Wiley-Interscience, New York.Google Scholar
  3. Calancie, B. and Stein, R., 1987, Measurement of rate constants for the contractile cycle of intact mammalian muscle fibers, Biophys. J., 51: 149.PubMedCrossRefGoogle Scholar
  4. Halpern, W. and Alpert, N., 1971, A stochastic signal method for measuring dynamic mechanical properties of muscle, J. Appl. Physiol., 31: 913.PubMedGoogle Scholar
  5. Jewell, B. R. and Rüegg, J. C., 1966, Oscillatory contraction of insect fibrillar muscle after glycerol extraction, Proc. R. Soc. Lond. B, 164: 428.CrossRefGoogle Scholar
  6. Kawai M. and Brandt, P. W., 1980, Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog, and crayfish, J. Muscle Res. Cell Motil., 1: 279.PubMedCrossRefGoogle Scholar
  7. Lehman, W., Bullard, B., and Hammond, K., 1974, Calcium-dependent myosin from insect flight muscles, J. Gen. Physiol., 63: 553.PubMedCrossRefGoogle Scholar
  8. Lund, J., Webb, M. R., and White, D. C. S., 1988, Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange, J. Biol. Chem., 263: 5505.PubMedGoogle Scholar
  9. Moore, R. L. and Stull, J. T., 1984, Myosin light chain phosphorylation in fast and slow skeletal muscles in situ, Am. J. Physiol., 247: C462.Google Scholar
  10. Persechini, A., Stull, J. T., and Cooke, R., 1985, The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers, J. Biol Chem., 260: 7951.PubMedGoogle Scholar
  11. Pringle, J. W. S., 1978, Stretch activation of muscle: function and mechanism, Proc. R. Soc. Lond. B, 201: 107.PubMedCrossRefGoogle Scholar
  12. Rossmanith, G. H., 1986, Tension responses of muscle to n-step pseudorandom length reversals: a frequency domain representation, J. Muscle Res. Cell Motil., 7: 299.PubMedCrossRefGoogle Scholar
  13. Stull, J. T., Bowman, B. F., Gallagher, P. J., Herring, B. P., Hsu, L., Kamm, K. E., Kubota, Y., Leachman, S. A., Sweeney, H. L., and Tansey, M. G., 1990, Myosin phosphorylation in smooth and skeletal muscles: regulation and function, in: “Frontiers in Smooth Muscle Research”, N. Sperelakis, J. D. Wood, eds., Wiley-Liss, New York, p. 107.Google Scholar
  14. Takahashi, S., Takano-Ohmuro, H., and Maruyama, K., 1990a Regulation of Drosophila myosin ATPase activity by phosphorylation of myosin light chains — I. wild-type fly, Comp. Biochem. Physiol., 95B: 179.Google Scholar
  15. Takahashi, S., Takano-Ohmuro, H., Maruyama, K., 1990b, Regulation of Drosophila myosin ATPase activity by phosphorylation of myosin light chains-II. Flightless mfδ-fly, Comp. Biochem. Physiol., 95B: 183.Google Scholar
  16. Takano-Ohmuro H., Takahashi, S., Hirose, G. K., Maruyama, K., 1990, Phosphorylated and dephosphorylated myosin light chains of Drosophila fly and larva, Comp. Biochem. Physiol., 95B: 171.Google Scholar
  17. Thorson, J. and White, D. C. S., 1983, Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle, J. Physiol., 343: 59.PubMedGoogle Scholar
  18. Unwin, D. M. and Ellington, C. P., 1979, An optical tachometer for measurement of the wing-beat frequency of free-flying insects, J. Exp. Biol., 82: 377.Google Scholar
  19. Warmke, J., 1990, Genetic analysis of myosin light chain-2 function in Drosophila melanogaster, Ph.D. dissertation: The Ohio State University, Columbus OH.Google Scholar
  20. Warmke, J. W., Kreuz, A. J., and Falkenthal, S., 1989, Co-localization of the Drosophila melanogaster myosin light chain-2 gene and a haplo-insuffi-cient locus that affects flight behavior to chromosome band 99E1-3, Genetics, 122: 139.PubMedGoogle Scholar
  21. Yamakawa, M., Molloy, J., Falkenthal, S., and Maughan, D., 1990a, pCa-tension curves and kinetics of stretch activation in skinned single fibers from Drosophila melanogaster, Biophys. J., 57: 540a.Google Scholar
  22. Yamakawa, M., Warmke, J., Falkenthal, S., and Maughan, D., 1990b, Properties of skinned muscle fibers from myosin light chain-2. Deficient flightless mutants of Drosophila melanogaster, Biophys. J., 57: 411a.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Mineo Yamakawa
    • 1
  • Jeffrey Warmke
    • 2
  • Scott Falkenthal
    • 2
  • David Maughan
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of VermontBurlingtonUSA
  2. 2.Department of Molecular GeneticsOhio State UniversityColumbusUSA

Personalised recommendations