Advertisement

Isotonic Shortening Parameters but not Isometric Force Development are Altered in Ragweed Pollen Sensitized Canine Bronchial Smooth Muscle

  • He Jiang
  • Kang Rao
  • Andrew J. Halayko
  • Wayne Kepron
  • Newman L. Stephens
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)

Abstract

Studies on airway smooth muscle can serve two major purposes. First, the elucidation of basic mechanisms and properties of smooth muscle contraction and its regulation can be obtained. The trachealis, for example, provides a plentiful source of relatively pure smooth muscle tissue for studies at biochemical and molecular levels. In addition, both tracheal and bronchial smooth muscles furnish us with an optimal preparation for studying mechanical properties because their respective muscle fibers are oriented in a parallel fashion. The second purpose in studying airway smooth muscle is in characterizing the pathophysiology of asthma with hopes of advancing disease management. On this tack, we have a canine model of the disease (Kepron et al., 1977), in which dogs are immunized from birth with ragweed pollen. These animals demonstrate a generalized sensitization of their smooth muscles to the pollen antigen (Antonissen et al., 1979; Antonissen et al., 1980; Kong and Stephens, 1983; Wang et al., 1990). Concomitantly, they produce high IgE anti-ragweed antibody titers and show marked increases in airflow resistance upon aerosolized, specific antigen bronchoprovocation (Becker et al., 1989).

Keywords

Smooth Muscle Airway Smooth Muscle Smooth Muscle Contraction Muscle Strip Bronchial Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonissen, L. A., Mitchell, R. W., Kroeger, E. A., Kepron, W., Tse, K. S., and Stephens, N. L., 1979, Mechanical alterations of airway smooth muscle in a canine asthmatic model, J. Appl. Physiol., 46: 681.PubMedGoogle Scholar
  2. Antonissen, L. A., Mitchell, R. W., Kroeger, E. A., Kepron, W., Tse, K. S., Stephens, N. L., and Bergen, J., 1980, Histamine pharmacology in airway smooth muscle from a canine model of asthma, J. Pharmacol. Exp. Ther., 213: 150.PubMedGoogle Scholar
  3. Bárány, M, 1967, ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physiol., 50: 197.PubMedCrossRefGoogle Scholar
  4. Becker, A. B., Hershkovich, J., Simons, F. E. R., Simons, K. J., Lilley, M. K., and Kepron, W., 1989, Development of chronic airway hyperresponsiveness in ragweed-sensitized dogs, J. Appl. Physiol., 66: 2691.PubMedGoogle Scholar
  5. Brutsaert, D. L., Claes, V. A., and Goethals, M. A., 1971, Velocity of shortening of unloaded heart muscle and the length-tension relation, Circ. Res., 29: 63.PubMedGoogle Scholar
  6. Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science, 211: 495.PubMedCrossRefGoogle Scholar
  7. Dulfano, M. J. and Hewetson, J., 1966, Radiologic contributions to the nosology of obstructive lung disease entities, Dis. Chest, 50: 270.PubMedCrossRefGoogle Scholar
  8. Epstein, B. S., Sherman, J., and Walzer, E. E., 1948, Bronchography in asthmatic patients, with the aid of adrenalin, Radiology, 50: 96.PubMedGoogle Scholar
  9. Hill, A. V., 1938, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. B, 126: 136.CrossRefGoogle Scholar
  10. Horwits, R., Kempner, E. S., Bishor, M. E., and Podolsky, R. J., 1986, A physiological role for titin and nebulin in skeletal muscle, Nature, 323: 160.CrossRefGoogle Scholar
  11. Jiang, H. and Stephens, N. L., 1990, Contractile properties of bronchial smooth muscle with and without cartilage, J. Appl Physiol., 69: 120.PubMedGoogle Scholar
  12. Kepron, W., James, J. M., Kirk, B., Sehon, A. H., and Tse, K. S., 1977, A canine model for reaginic hypersensitivity and allergic bronchoconstriction, J. Allergy Clin. Immunol., 59: 64.PubMedCrossRefGoogle Scholar
  13. Kong, S. K. and Stephens, N. L., 1983, Mechanical properties of pulmonary arteries from sensitized dogs, J. Appl. Physiol., 55: 1669.PubMedGoogle Scholar
  14. Kong, S. K., Shiu, R. P. C., and Stephens, N. L., 1986, Studies of myofibrillar ATPase in ragweed-sensitized canine pulmonary smooth muscle, J. Appl Physiol., 60: 92.PubMedGoogle Scholar
  15. Mitchell, R. W. and Stephens, N. L., 1983, Maximum shortening velocity of smooth muscle: zero load-clamp vs afterloaded method, J. Appl Physiol., 55: 1630.PubMedGoogle Scholar
  16. Rasmussen, H., Takuwa, Y., and Park, S., 1987, Protein kinase C in the regulation of smooth muscle contraction, FASEB J., 1: 177.PubMedGoogle Scholar
  17. Siegman, M., Butler, T. M., Mooers, S. U., and Davies, R., 1977, Mechanical and energetic correlates of isometric relaxation, in: “Excitation-Contraction Coupling in Smooth Muscle”, R. Casteels, T. Godfraind, and J. C. Rüegg, eds., Elsevier/North Holland, New York, p. 449.Google Scholar
  18. Stephens, N. L., Kong, S. K., and Seow, C. Y., 1988, Mechanisms of increased shortening of sensitized airway smooth muscle, in: “Mechanisms of Asthma: Pharmacology, Physiology, and Management”, C. L. Armour, J. L. Black, eds., Alan R. Liss, New York, p. 231.Google Scholar
  19. Wang, Z., Seow, C. Y., Kepron, W., and Stephens, N. L., 1990, Mechanical alterations in sensitized canine saphenous vein, J. Appl Physiol., 69: 171.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • He Jiang
    • 1
  • Kang Rao
    • 1
  • Andrew J. Halayko
    • 1
  • Wayne Kepron
    • 1
  • Newman L. Stephens
    • 1
  1. 1.Department of PhysiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations