Skip to main content

Regulation of the Step-Distance in Shortening Muscles

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

  • 142 Accesses

Abstract

It is argued that the force driving muscular shortening (Ψ) differs from the force (φ) responsible for tension generation, Ψ is associated with ATP-induced dissociation of actomyosin, whereas φ is due to an isomerization reaction of actomyosin, following the hydrolysis of ATP. In a shortening muscle, ATP is thus hydrolyzed after movement commences. Both forces are intimately coupled with appreciable changes in the structure of the hydration shell at the interface between the two proteins, which involves the release of stored energy. When an active muscle is allowed to shorten freely, Ψ gives rise to a step- (or sliding-) distance (Δl1) which should be a variable and its value depends on the environmental conditions. On the other hand, the step distance (Δl2) observed upon releasing a muscle which had developed rigor tension isometrically is a constant, the value of which is related to the myosin head’s length. The maximal values of the two forces (Ψ0 and φ0), as well as of Δl2 are calculated on the basis of experimental data. The forces and their corresponding step distances are related through the standard free energies of the two chemical reactions responsible for them. It is claimed that the same mechanochemical mechanisms operate also in all microtube-based locomotion and force-generation systems and, furthermore, that practically the same values of Ψo, φ0, Δl1, and Δl2 are shared by the two types of biological energy convertors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajtai, A., French, A. R., and Burghardt, T. P., 1989, Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance, Biophys. J., 56: 535.

    Article  PubMed  CAS  Google Scholar 

  • Bárány, M., 1967, ATPase activity of myosin correlated with speed of muscle contraction, J. Gen. Physiol., 50: 197.

    Article  PubMed  Google Scholar 

  • Berg, D. G., Winter, R. B., and von Hippel, P. H., 1981, Diffusion-driven mechanisms of protein translocation on nucleic acids, Biochemistry, 20: 6929.

    Article  PubMed  CAS  Google Scholar 

  • Borejdo, J. and Oplatka, A., 1976, Tension development in skinned glycerinated rabbit psoas fiber segments irrigated with soluble myosin fragments, Biochim. Biophys. Acta, 440: 241.

    Article  PubMed  CAS  Google Scholar 

  • Coats, J. H., Criddle, A. H., and Geeves, M. A., 1985, Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment 1 from rabbit skeletal muscle, Biochem. J., 232: 351.

    Google Scholar 

  • Edman, K. A. P. and Lou, L., 1990, Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibers, J. Physiol., 424: 133.

    PubMed  CAS  Google Scholar 

  • Eisenberg, E. and Hill, T. L., 1985, Muscle contraction and free energy transduction in biological systems, Science, 227: 999.

    Article  PubMed  CAS  Google Scholar 

  • Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D., and Yanagida, T., 1990, Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay, J. Mol. Biol., 216: 49.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F., 1980, “Reflections on Muscle”, Liverpool Univ. Press, London.

    Google Scholar 

  • Huxley, H. E., 1990, Sliding filaments and molecular motile systems, J. Biol Chem., 265: 8347.

    PubMed  CAS  Google Scholar 

  • Janmey, P. A., Hvidt, S., Oster, G. F., Lamb, J., Stossel, T. P., and Hartwig, J. H., 1990, Effect of ATP on actin filament stiffness, Nature, 347: 95.

    Article  PubMed  CAS  Google Scholar 

  • Kamimura, S. and Takahashi, K., 1981, Direct measurement of the force of microtubule sliding in flagella, Nature, 293: 566.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, T., 1985, Thermodynamic analysis of muscle ATPase mechanisms, Physiol. Rev., 65: 467.

    PubMed  CAS  Google Scholar 

  • Kushmerick, M. J. and Davies, R. E., 1969, The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles, Proc. R. Soc. Lond. B, 174: 315.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, S., Karr, T., and Harrington, W. F., 1988, Proc. Nat’l. Acad. Sci. U.S.A., 85: 1849.

    Article  CAS  Google Scholar 

  • Maruyama, T., Kometani, K., and Yamada, K., 1989, Effect of ethylene glycol on contractile properties of glycerinated rabbit psoas muscle, in: “Muscle Energetics”, R. J. Paul, G. Elzinga, and K. Yamada, eds., Alan R. Liss, New York, p. 223.

    Google Scholar 

  • Oplatka, A., 1972, On the mechanochemistry of muscular contraction, J. Theor. Biol., 34: 379.

    Article  PubMed  CAS  Google Scholar 

  • Oplatka, A., 1989, Changes in the hydration shell of actomyosin are obligatory for tension generation and movement, in: “Muscle Energetics”, R. J. Paul, G. Elzinga, K. Yamada, eds., Alan R. Liss, New York, p. 45.

    Google Scholar 

  • Pate, E. and Cooke, R., 1989, A model of crossbridge action: The effects of ATP, ADP and Pi, J. Muscle Res. Cell Motil., 10: 181.

    Article  PubMed  CAS  Google Scholar 

  • Payne, M. R. and Rudnick, S. E., 1989, Regulation of vertebrate striated muscle contraction, Trends. Biochem. Sci., 15: 357.

    Article  Google Scholar 

  • Porter, M. E. and Johnson, K. A., 1989, Dynein structure and function, Ann. Rev. Cell Biol., 5: 119.

    Article  PubMed  CAS  Google Scholar 

  • Rau, D. C., Lee, B., and Parsegian, V. A., 1984, Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices, Proc. Nat’l. Acad. Sci. U.S.A., 81: 2621.

    Article  CAS  Google Scholar 

  • Tirosh, R., Low, W. Z., and Oplatka, A., 1990, Translational motion of actin filaments in the presence of heavy meromyosin and MgATP as measured by doppler broadening of laser light scattering, Biochim. Biophys. Acta, 1037: 274.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, K. Y., Kron, S. J., and Spudich, J. A., 1990, The myosin step size: Measurement of the unit displacement per ATP hydrolyzed in an in vitro assay, Proc. Natl. Acad. Sci. U.S.A., 87: 7130.

    Article  PubMed  CAS  Google Scholar 

  • Uyeda, T. Q. P., Kron, S. J., and Spudich, J. A., 1990, Myosin step size: Estimation from slow sliding movement of actin over low densities of heavy meromyosin, J. Mol. Biol., 214: 699.

    Article  PubMed  CAS  Google Scholar 

  • Warshaw, D. M., Desrosiers, J. M., Work, S. S., and Trybus, K. M., 1990, Smooth muscle myosin crossbridge interactions modulate actin filament sliding velocity in vitro, J. Cell Biol., 111: 453.

    Google Scholar 

  • White, D. C. S., 1970, Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle, J. Physiol., 208: 583.

    PubMed  CAS  Google Scholar 

  • Woledge, R. C., Curtin, M. A., and Homsher, E, 1985, “Energetic aspects of muscle contraction”, Academic Press, London.

    Google Scholar 

  • Yanagida, T., Kuranaga, I., and Inoue, A., 1982, Interaction of myosin with thin-filaments during contraction and relaxation: Effect of ionic strength, J. Biochem., 92: 407.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Oplatka, A. (1991). Regulation of the Step-Distance in Shortening Muscles. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics