Advertisement

Regulation of Smooth Muscle Myosin Light Chain Kinase by Calmodulin

  • Anthony R. Means
  • Indrani C. Bagchi
  • Mark F. A. VanBerkum
  • Bruce E. Kemp
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)

Abstract

Whereas Ca2+ serves as the primary intracellular messenger for regulation of contraction in all types of muscle, the underlying molecular mechanisms are different. Striated muscles utilize troponin C as the Ca2+ receptor and contain an array of cell specific proteins involved in maintenance of Ca2+ homeostasis. Phosphorylation reactions are important in regulation of contraction but phosphorylation of myosin light chains does not play a major role in force generation (Sweeney and Stull, 1990). Smooth muscles utilize calmodulin as the Ca2+ receptor and phosphorylation of myosin light chains is the rate-limiting reaction in contractility (Kamm and Stull, 1985). Since myosin light chain kinase is the primary enzyme that catalyzes light chain phosphorylation, analysis of this complex activation process is crucial to the understanding of how smooth muscles move.

Keywords

Myosin Light Chain Myosin Light Chain Kinase Rabbit Skeletal Muscle Amino Acid Repeat Calmodulin Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagchi, I. C., Kemp, B. E., and Means, A. R., 1989, Myosin light chain kinase structure function analysis using bacterial expression, J. Biol. Chem., 264: 15843.PubMedGoogle Scholar
  2. Benian, G. M., Kiff, J. E., Neckelmann, N., Moerman, D. G., and Watterson, R.H., 1989, Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans, Science, 342: 45.Google Scholar
  3. Blumenthal, D. K. and Krebs, E. G., 1987, Preparation and properties of the calmodulin-binding domain of skeletal muscle myosin light chain kinase, Methods Enzymol., 139: 115.PubMedCrossRefGoogle Scholar
  4. Blumenthal, D. K., Takio, D., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., and Krebs, E. G., 1985, Identification of the calmodulin binding domain of skeletal muscle myosin light chain kinase, Proc. Nat’l. Acad. Sci. U.S.A., 82: 3187.CrossRefGoogle Scholar
  5. Davis, T. N., Urdea, M. S., Masiarz, F. R., and Thorner, J., 1986, Isolation of the yeast calmodulin gene: Calmodulin is an essential protein, Cell, 47: 423.PubMedCrossRefGoogle Scholar
  6. DeGrado, W. F., Erickson-Viitanen, S., Wolfe, H. R. and O’Neil, K. T., 1987, Predicted calmodulin binding sequence in the γ-subunit of Phosphorylase b kinase, Proteins, 2: 20.CrossRefGoogle Scholar
  7. Edelman, A. M., Takio, K., Blumenthal, D. K., Hansen, R. S., Walsh, K. A., Titani, K., and Krebs, E. G., 1985, Characterization of the calmodulin-binding and catalytic domains in skeletal muscle myosin light chain kinase, J. Biol Chem., 260: 11275.PubMedGoogle Scholar
  8. Foster, C. J., Johnston, S. A., Sunday, B., and Gaeta, F. C. A., 1990, Potent peptide inhibitors of smooth muscle myosin light chain kinase: Mapping of the pseudosubstrate and calmodulin binding domains, Arch. Biochem. Biophys., 280: 397.PubMedCrossRefGoogle Scholar
  9. George, S. E., VanBerkum, M. F. A., Ono, T., Cook, R. G., Hanley, R. M., Putkey, J. A., and Means, A. R., 1990, Chimeric calmodulin-cardiac troponin C proteins differentially activate calmodulin target enzymes, J. Biol. Chem., 265: 9228.PubMedGoogle Scholar
  10. Guerriero, V., Russo, M. A., Olson, N. J., Putkey, J. A., Means, A. R., 1986, Location of functional domains in a cDNA for chicken gizzard myosin light chain kinase, Biochemistry, 25: 8372.PubMedCrossRefGoogle Scholar
  11. Hardy, D. O., Bender, P. K., and Kretsinger, R. H., 1988, Two calmodulin genes are expressed in Arbacia punctulata. An ancient gene duplication is indicated., J. Mol Biol, 199: 223.PubMedCrossRefGoogle Scholar
  12. Ikebe, M., Malgorzata, S., Kemp, B. E., Means, A. R., and Hartshorne, D. J., 1987, Proteolysis of smooth muscle myosin light chain kinase: Formation of inactive and calmodulin-independent fragments, J. Biol. Chem., 262: 13828.PubMedGoogle Scholar
  13. Ikebe, M., Maruta, S., and Reardon, S., 1989, Location of the inhibitory region of smooth muscle myosin light chain kinase, J. Biol Chem., 264: 6764.Google Scholar
  14. Ito, M., Dabrowska, R., Guerriero, V. J., and Hartshorne, D. J., 1989, Identification in turkey gizzard of an acidic protein related to the C-terminal portion of smooth muscle myosin light chain kinase., J. Biol. Chem., 264: 13971.PubMedGoogle Scholar
  15. Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle., Ann. Rev. Pharmacol. Toxicol, 25: 593.CrossRefGoogle Scholar
  16. Kemp, B. E., Pearson, R. B., Guerriero, V., Bagchi, I. C., and Means, A. R., 1987, The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence, J. Biol. Chem., 262: 2542.PubMedGoogle Scholar
  17. Kennelly, P. J., Edelman, A. M., Blumenthal, D. K., and Krebs, E. G., 1987, Rabbit skeletal muscle myosin light chain kinase: The calmodulin binding domain as a potential active site-directed inhibitory domain., J. Biol. Chem., 262: 11958.PubMedGoogle Scholar
  18. Labeit, S., Barlow, D. P., Gautel, M., Gibson, T., Holt, J., Hsieh, C. L., Francke, U., Leonard, K., Wardale, J., Whiting, A., and Trinick, J., 1990, A regular pattern of two types of 100-residue motif in the sequence of titin, Nature, 345: 273.PubMedCrossRefGoogle Scholar
  19. Lagace, L., Chandra, T., Woo, S. L. C., and Means, A. R., 1983, Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA, J. Biol. Chem., 258: 1684.PubMedGoogle Scholar
  20. Leachman, S. A., Herring, B. P., Gallagher, P. J., and Stull, J.T., 1989, Isolation of cDNA clone encoding chicken skeletal muscle myosin light chain kinase, J. Cell Biol, 107: 678a.Google Scholar
  21. Lukas, T. J., Burgess, W. H., Prendergast, F. G., Lau, W., and Watterson, D. M., 1986, Calmodulin binding domains: Characterization of phosphorylation and calmodulin binding site from myosin light chain kinase, Biochemistry, 25: 1458.PubMedCrossRefGoogle Scholar
  22. Malencik, D. A., Anderson, S. R., Bahrert, J. L., and Shalitin, Y., 1982, Functional interactions between smooth muscle myosin light chain kinase and calmodulin, Biochemistry, 21: 4031.PubMedCrossRefGoogle Scholar
  23. Olson, N. J., Pearson, R. B., Needleman, D., Hurwitz, M. Y., Kemp, B. E., and Means, A.R., 1990, Regulatory and structural motifs of chicken gizzard myosin light chain kinase, Proc. Nat’l Acad. Sci. U.S.A., 87: 2284.CrossRefGoogle Scholar
  24. O’Neil, K. T. and Degrado, W. F., 1985, A predicted structure of calmodulin suggests an electrostatic basis for its function, Proc. Nat’l Acad. Sci. U.S.A., 82: 4954.CrossRefGoogle Scholar
  25. O’Neil, K. T. and Degrado, W. F., 1989, The interaction of calmodulin with fluorescent and photoreactive model peptides: Evidence for a short interdomain separation, Proteins, 6: 284.PubMedCrossRefGoogle Scholar
  26. Pearson, R. B., Wettenhall, R. E. H., Means, A. R., Hartshorne, D. J., and Kemp, B. E., 1988, Autoregulation of enzymes by pseudosubstrate prototypes: Myosin light chain kinase, Science, 241: 970.PubMedCrossRefGoogle Scholar
  27. Persechini, A. and Kretsinger, R. H., 1988, The control helix of calmodulin functions as a flexible tether, J. Biol Chem., 263: 12175.PubMedGoogle Scholar
  28. Putkey, J. A., Slaughter, G. R., and Means, A. R., 1985, Bacterial expression and characterization of proteins encoded by the chicken calmodulin gene and a calmodulin processed gene, J. Biol. Chem., 260: 4704.PubMedGoogle Scholar
  29. Putkey, J. A., Ts’ui, K. F., Tanaka, T., Lagace, L., Stein, J. P., Lai, E. C., and Means, A. R., 1983, Chicken calmodulin genes: A species comparison of cDNA sequences and isolation of a genomic clone, J. Biol. Chem., 258: 11864.PubMedGoogle Scholar
  30. Roush, C. L., Kennelly, P. J., Glaccum, M. B., Helfman, D. M., Scott, J. D., and Krebs, E. G., 1988, Isolation of the cDNA encoding rat skeletal muscle myosin light chain kinase, J. Biol. Chem., 263: 10510.PubMedGoogle Scholar
  31. Russo, M. A., Guerriero, V., and Means, A. R., 1987, Hormonal regulation of a chicken oviduct mRNA that shares a common domain with gizzard myosin light chain kinase, Mol. Endocrinol., 1: 60.PubMedCrossRefGoogle Scholar
  32. Shoemaker, M. O., Lau, W., Shattuck, R. L., Kwiatkowski, A. P., Matrisian, P. E., Guerra-Santos, L., Lukas, T. J., Van Eldik, L. J., and Watterson, D. M., 1990, Use of DNA sequence and mutant analyses and the antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity, J. Cell Biol, 111: 1107.PubMedCrossRefGoogle Scholar
  33. Sweeney, H. L. and Stull, J. T., 1990, Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: Implications for regulation of actin-myosin interaction, Proc. Nat’l Acad. Sci. U.S.A., 87: 414.CrossRefGoogle Scholar
  34. Takio, K., Blumenthal, D. K., Edelman, A. M., Walsh, K. A., Krebs, E. G., and Titani, K., 1985, Amino acid sequence of an active fragment of rabbit skeletal muscle myosin light chain kinase, Biochemistry, 24: 6028.PubMedCrossRefGoogle Scholar
  35. Takio, K., Blumenthal, D. K., Walsh, K. A., Titani, K., and Krebs, E. G., 1986, Amino acid sequence of rabbit skeletal muscle myosin light chain kinase, Biochemistry, 25: 8049.PubMedCrossRefGoogle Scholar
  36. Tan, J. L. and Spudich, J. A., 1990, Dictyostelium myosin light chain kinase, J. Biol. Chem., 265: 13818.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Anthony R. Means
    • 1
  • Indrani C. Bagchi
    • 1
  • Mark F. A. VanBerkum
    • 1
  • Bruce E. Kemp
    • 2
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA
  2. 2.St. Vincent’s Institute of Medical ResearchMelbourneAustralia

Personalised recommendations