Biophysical and Biochemical Properties of “Asthmatic” Airway Smooth Muscle

  • Newman L. Stephens
  • He Jiang
  • Chun Y. Seow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


It is fair to say that the lessons learned from basic asthma research have not afforded any major insights into fundamental mechanisms of smooth muscle mechanical function. However they have helped to focus on the fact that very specialized, basic mechanical processes are affected in “asthma”. It is the use of analytic procedures developed in basic research that has helped sharpen our insight into asthma. Hopefully results obtained with these newer methods will lead to elucidation of the pathogenesis of asthma.


Airway Smooth Muscle Myosin Light Chain Kinase Bronchial Smooth Muscle Tracheal Smooth Muscle Maximum Isometric Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa H., Miyazaki, N., Shigematsu, N., and Tomooka, M., 1988, A possible role of airway epithelium in modulating hyperresponsiveness, Br. J. Pharmacol., 93: 139.PubMedGoogle Scholar
  2. Antonissen, L. A., Mitchell, R. W., Kroeger, E. A., Kepron, W., Tse, K. S., and Stephens, N. L., 1979, Mechanical alterations of airway smooth muscle in a canine asthmatic model, J. Appl. Physiol, 46: 681.PubMedGoogle Scholar
  3. Armour, C. L., Black, J. L., Berend, N., and Woolcock, A. J., 1984, The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity, Resp. Physiol., 58: 223.CrossRefGoogle Scholar
  4. Armour, C. L., Black, J. L., and Johnson, P. R. A., 1988, A role for inflammatory mediators in airway hyperresponsiveness, in: “Mechanisms in Asthma”, C. L. Armour and J. L. Black, eds., Alan R. Liss, New York, p. 99.Google Scholar
  5. Bárány, M., 1967, ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physiol, 50: 197.PubMedCrossRefGoogle Scholar
  6. Chiu, Y. C., Ballon, E. W., and Ford, L. E., 1987, Force, velocity, and power changes during normal and potentiated contractions of cat papillary muscle, Circ. Res., 60: 446.PubMedGoogle Scholar
  7. Coburn, R. F. and Tomita, T, 1973, Evidence of nonadrenergic noncholinergic inhibitory nerves in the guinea pig trachealis muscle, Am. J. Physiol, 224: 1072.PubMedGoogle Scholar
  8. Furchgott, R. F. and Zavodzki, J. V., 1980, Acetylcholine relaxes arterial smooth muscle by releasing a relaxing substance from endothelial cells, Fed. Proc, 39: 581.Google Scholar
  9. Guerriero, V., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R., 1986, Domain organization of chicken gizzard myosin light chain kinase deduced from a cloned cDNA, Biochemistry, 25: 8372.PubMedCrossRefGoogle Scholar
  10. Halayko, A., Jiang, H., Rao, K., and Stephens, N. L., 1990, Muscle cellularity and contractile proteins in canine airway smooth muscle, FASEB J., 4: A444.Google Scholar
  11. Hill, A. V., 1938, The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. B, 126: 136CrossRefGoogle Scholar
  12. Hirshman, C. A. and Dorones, H., 1986, Airways responses to methacholine and histamine in Basenji greyhounds and other purebred dogs, Resp. Physiol, 63: 339.CrossRefGoogle Scholar
  13. Hoh, Y. H., McGrath, P. A., and Hale, P. T., 1978, Electrophoretic analysis of multiple forms of rat cardiac myosin: effect of hypophysectomy and thyroxine replacement, J. Mol Cell Cardiol, 10: 1053.PubMedCrossRefGoogle Scholar
  14. Holme, G. and Piechuta, H., 1981, The derivation of an inbred line of rats which develop asthma like symptoms following challenge with aerosolized antigen, Immunology, 42: 19.PubMedGoogle Scholar
  15. Jewell, B. R. and Wilkie., D. R., 1960, The mechanical properties of relaxing muscle, J. Physiol, 152: 30.PubMedGoogle Scholar
  16. Jiang, H. and Stephens, N. L., 1990, Contractile properties of bronchial smooth muscle with and without cartilage, J. Appl Physiol, 69: 120.PubMedGoogle Scholar
  17. Kepron, W., James, J. M., Kirk, B., Sehon, A. H., and Tse, K. S., 1977, A canine model for reaginic hypersensitivity and allergic bronchoconstriction, J. Allergy Clin. Immunol, 59: 64.PubMedCrossRefGoogle Scholar
  18. Kong, S. and Stephens, N. L., 1981, Pharmacological studies of sensitized canine pulmonary blood vessels, J. Pharmacol Exp. Ther., 219: 551.PubMedGoogle Scholar
  19. Levitt, R. C. and Mitzner, W., 1988, Expression of airway hyperreactivity to acetylcholine as a simple autosomal recessive trait, FASEB J., 2: 2605.PubMedGoogle Scholar
  20. Long, W. M., Yerger, L. D., Martinez, H., Codias, E., Sprung, C. L., Abraham, W. M., and Wanner, A., 1988, Modification of bronchial blood flow during allergic airway responses, J. Appl Physiol, 65: 272.PubMedGoogle Scholar
  21. Mapp, C. E., Chitano, P., DeMarzo, N., DiBlasi, P., Saetta, M., DiStefano, A., Bosco, V. M., Allegra, L., and Fabbri, L. M., 1989, Response to acetylcholine and myosin content of isolated canine airways. J. Appl. Physiol, 67: 1331.PubMedGoogle Scholar
  22. Rasmussen, H., Takuwa, Y., and Park, S., 1987, Protein kinase C in the regulation of smooth muscle contraction, FASEB J., 1: 177.PubMedGoogle Scholar
  23. Richardson, J. B., 1979, Nerve supply to the lungs, Am. Rev. Resp. Dis., 119: 785.PubMedGoogle Scholar
  24. Rudel, R. and Taylor, S. R., 1989, Striated muscle fibers; Facilitation of contraction at short lengths by caffeine, Science, 172: 389.Google Scholar
  25. Shibata, S. and Cheng, J. R., 1977, Relaxation of vascular smooth muscle in spontaneously hypertensive rats, Blood Vessels, 14: 247.Google Scholar
  26. Shioya, T., Pollack, E. R., Munoz, N. M., and Leff, A. R., 1987, Distribution of airway contractile responses in major resistance airways of the dog, Am. J. Pathol, 129: 102.PubMedGoogle Scholar
  27. Siegman, M. J., Davidheiser, S., Butler, T. M., and Mooers, S. U., 1985, What is the length-tension relation in smooth muscle, Fed. Proc, 44: 456A.Google Scholar
  28. Sobieszek, A. and Bremel, R., 1975, Preparation and properties of vertebrate smooth muscle myofibrils and actomyosin, Eur. J. Biochem., 55: 49.PubMedCrossRefGoogle Scholar
  29. Somlyo, A. P., Kitazawa, T., Himpens, B., Matthijs, G., Horiuti, K., Kobayashi, S., Goldman, Y. S., and Somlyo, A. V., 1989, Modulation of Ca2+-sensitiv-ity and of the time course of contraction in smooth muscle: A major role of protein phosphatases, in: “Advances in Protein Phosphatases, Vol. 5”, W. Merleude and J. DiSalvo, eds., Leuven University Press, Leuven, p. 181.Google Scholar
  30. Somlyo, A. V. and Somlyo, A. P., 1968, Electromechanical and pharmaco-mechanical coupling in vascular smooth muscle, J. Pharmacol Exp. Ther., 159: 129.PubMedGoogle Scholar
  31. Somlyo, A. V., Bond, M., Beaner, P. F., Ashton, F. T., Holtzen, H., and Somlyo, A. P., 1984, The contractile apparatus of smooth muscle: An update, in: “Smooth Muscle Contraction”, N. L. Stephens, ed., M. Dekker Inc., New York.Google Scholar
  32. Souhrada, M. and Souhrada, J. F., 1981, Reassessment of electrophysiological and contractile characteristics of sensitized airway smooth muscle, Resp. Physiol, 46: 17.CrossRefGoogle Scholar
  33. Stephens, N. L., 1987, State of art: Airway smooth muscle, Am. Rev. Resp. Dis., 135: 960.PubMedGoogle Scholar
  34. Stephens, N. L. and Seow, C. Y., 1987, Smooth Muscle Contraction: Mechanisms of Crossbridge Slowing, in: “Regulation and Contraction of Smooth Muscle”, M. J. Siegman, A. P. Somlyo and N. L. Stephens, eds., Alan R. Liss, New York, p. 357.Google Scholar
  35. Stephens, N. L., Kong, S. K., and Seow, C. Y., 1988, Increased shortening of Airway Smooth Muscle, in: “Mechanisms in Asthma”, C. L. Armour and J. L. Black, eds., Alan R. Liss, New York, p. 231.Google Scholar
  36. Taylor, S. R., 1974, Decreased activation in skeletal muscle fibers at short lengths, in: “The Physiologic Basis of Starling’s Law of the Heart”, R. Porter, D. W. Fitzsimmons, eds., Elsevier/Excerpta Medica North Holland, London.Google Scholar
  37. Von Hayek, H., 1990, “The Human Lung”, Hafner Press, New York.Google Scholar
  38. Wagner, C. D., Gundel, R. H., Reilly, P., Haynes, N., Letts, L. G., and Rothlein, R., 1990, Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma, Science, 247: 456.CrossRefGoogle Scholar
  39. Wang, Z., Seow, C. Y., Kepron, W., and Stephens, N. L., 1990, Mechanical alterations in sensitized canine saphenous vein, J. Appl Physiol, 69: 171.PubMedGoogle Scholar
  40. Wanner, A., Barker, J. A., Long, W. M., Mariassy, A. T., and Chediak, A. D., 1988, Measurement of airway mucosal perfusion and water volume with an inert soluble gas, J. Appl Physiol, 65: 264.PubMedGoogle Scholar
  41. Xu, J., Stephens, N. L., Ford-Hutchinson, A., Jones, T., and Piechuta, H., 1990, Mechanical properties of inbred hyperreactive rat trachealis, FASEB J., 4: A269.Google Scholar
  42. Yanagisawa, M., Kurchaya, H., and Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T., 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature, 322: 411.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Newman L. Stephens
    • 1
  • He Jiang
    • 1
  • Chun Y. Seow
    • 1
  1. 1.Department of Physiology Faculty of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations