Control and Function of Alterations in Contractile Protein Isoform Expression in Vascular Smooth Muscle

  • Charles L. Seidel
  • David Rickman
  • Heidi Steuckrath
  • Julius C. Allen
  • Andrew M. Kahn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


The use of autologous saphenous veins for reconstruction of occluded, atherosclerotic peripheral and coronary arteries is a surgical procedure widely used to relieve the symptoms of compromised arterial flow. Independent of graft location, failure within the first week results primarily from thrombus formation while late failure (months to years) can be due to intimai and medial hypertrophy and/or the re-occurrence of atherosclerosis (Unni et al., 1974; Lawrie et al., 1976; Gunthaner et al., 1979; Tracey et al., 1979).


Myosin Heavy Chain Saphenous Vein Vein Graft Intimal Thickening Myosin Heavy Chain Isoforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barja, F., Coughlin, C., Belin, D., and Gabbiani, G., 1986, Actin isoform synthesis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cells in vivo and in vitro, Lab. Invest., 55: 226.Google Scholar
  2. Berner, P. F., Somlyo, A. V., and Somlyo, A. P., 1981, Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle, J. Cell Biol, 88: 96.PubMedCrossRefGoogle Scholar
  3. Bevan, J. A., Bevan, R. D., Chang, P. C., Pegram, B. L., Purdy, R. E., and Su, C., 1975, Analysis of changes in reactivity of rabbit arteries and veins two weeks after induction of hypertension by coarctation of the abdominal aorta, Cric. Res., 37: 183.Google Scholar
  4. Brody, W. R., Kosek, J. C., and Angell, W. W., 1972, Changes in vein grafts following aorto-coronary bypass induced by pressure and ischemia, J. Thorac. Cardiovasc. Surg., 64: 847.PubMedGoogle Scholar
  5. Chamley-Campbell, J. H., Campbell, G. R., and Ross, R., 1981, Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens, J. Cell Biol, 89: 379.PubMedCrossRefGoogle Scholar
  6. Clowes, A. W. and Schwartz, S. M., 1985, Significance of quiescent smooth muscle migration in the injured rat carotid artery, Circ. Res., 56: 139.PubMedGoogle Scholar
  7. DeBiasio, R. L., Wang, L.-L., Fisher, G. W., and Taylor, D. L., The dynamic distribution of fluorescent analogues of actin and myosin in protrusions at the leading edge of migrating Swiss 3T3 fibroblasts, J. Cell Biol., 107: 2631.Google Scholar
  8. Dilley, R. J., McGeachie, J. K., and Prendergast, F. J., 1988, A review of the histologic changes in vein-to-artery grafts, with particular reference to intimai hyperplasia, Arch. Surg., 123: 691.PubMedCrossRefGoogle Scholar
  9. Dobrin, P. B., Littooy, F. N., and Endean, E. D., 1989, Mechanical factors predisposing to intimai hyperplasia and medial thickening in autogenous vein grafts, Surgery, 105: 393.PubMedGoogle Scholar
  10. Fatigati, V. and Murphy, R. A., 1984, Actin and tropomyosin variants in smooth muscles: dependence of tissue type, J. Biol Chem., 259: 14383.PubMedGoogle Scholar
  11. Fingerle, J., Johnson, R., Clowes, A. W., Majesky, M. W., and Reidy, M. A., 1989, Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery, Proc. Nat’l. Acad. Sci. U.S.A., 86: 8412.CrossRefGoogle Scholar
  12. Guthaner, D. F., Robert, E. W., Alderman, E. L., and Wexler, L., 1979, Long-term serial angiographic studies after coronary artery bypass surgery, Circulation, 60: 250.PubMedGoogle Scholar
  13. Johansson, B., 1976, Structural and functional changes in rat portal veins after experimental portal hypertension, Acta Physiol. Scand., 98: 381.PubMedCrossRefGoogle Scholar
  14. Kocher, O., Skalli, O., Bloom, W. S., and Gabbiani, G., Cytoskeleton of rat aortic smooth muscle cells: Normal conditions and experimental intimai thickening, Lab. Invest., 50: 645.Google Scholar
  15. Lawrie, G. M., Lie, J. T., Morris, G. C., and Beazley, H. L., 1976, Vein graft patency and intimai proliferation after aortocoronary bypass: Early and long term angiopathologic correlations, Am. J. Cardiol., 38: 856.PubMedCrossRefGoogle Scholar
  16. Libby, P. and O’Brien, K. V., 1984, The role of protein breakdown in growth, quiescence, and starvation of vascular smooth muscle cells, J. Cell. Physiol, 118: 317.PubMedCrossRefGoogle Scholar
  17. McKenna, N. M., Wang, Y.-L., and Konkel, M. E., 1989, Formation and movement of myosin-containing structures in living fibroblasts, J. Cell Biol., 109: 1163.PubMedCrossRefGoogle Scholar
  18. Olivetti, G., Anversa, P., Melissari, M., and Loud, A. V., 1980, Morphometry of medial hypertrophy in the rat thoracic aorta, Lab. Invest., 42: 559.PubMedGoogle Scholar
  19. Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M., 1986, Expression of smooth muscle-specific alpha-isoactin in cultured vascular smooth muscle cells: Relationship between growth and cytodifferentiation, J. Cell Biol, 102: 343.PubMedCrossRefGoogle Scholar
  20. Pollard, T. D., Satterwhite, L., Cisek, L., Corden, J., Sato, M., and Maupin, P., 1990, Actin and myosin biochemistry in relation to cytokinesis, Ann. N. Y. Acad. Sci., 582: 120.PubMedCrossRefGoogle Scholar
  21. Sasaki, Y., Uchida, T., and Sasaki, Y., 1989, A variant derived from rabbit aortic smooth muscle: Phenotype modulation and restoration of smooth muscle characteristics in cells in culture, J. Biochem., 106: 1009.PubMedGoogle Scholar
  22. Seidel, C. L. and Murphy, R. A., 1979, Changes in rat aortic actomyosin content with maturation, Blood Vessels 16: 98.PubMedGoogle Scholar
  23. Seidel, C. L., Lewis, R. M., Bowers, R., Bukoski, R. D., Kim, H-S., Allen, J. C., and Hartley, C., 1984, Adaptation of canine saphenous veins to grafting: correlation of contractility and contractile protein content, Circ. Res., 55: 102.PubMedGoogle Scholar
  24. Seidel, C. L., White, V., Wallace, C., Amann, J., Dennison, D., Schildmeyer, L. A., Vu, B., Allen, J. C., Navarro, L., and Eskin, S., 1988, Effect of seeding density and time in culture on vascular smooth muscle cell proteins, Am. J. Physiol., 254: C235.PubMedGoogle Scholar
  25. Seidel, C. L., Wallace, C. L., Dennison, D. K., and Allen, J. C., 1989, Vascular myosin expression during cytokinesis, attachment, and hypertrophy, Am. J. Physiol., 256: C793.PubMedGoogle Scholar
  26. Seidel, C. L. and Schildmeyer, L. A., 1987, Vascular smooth muscle adaptation to increased load, Ann. Rev. Physiol, 49: 489.CrossRefGoogle Scholar
  27. Seidel, C. L., Allen, J. C., Wallace, C. L., Jemelka, S. K., Navran, S. S., and Dennison, D. K., 1990, Relationship between cell Na, Na pump number, myosin expression and proliferation in cultured canine vascular smooth muscle cells, in: “Molecular Biology of the Cardiovascular System”, R. Roberts, M. D. Schneider, eds., Wiley-Liss, New York, p. 269.Google Scholar
  28. Sellers, J. R. and Umemoto, S., 1989, Effect of multiple phosphorylations on movement of smooth muscle and cytoplasmic myosin, in: “Calcium Protein Signalling”, H. Hidaka, E. Carafoli, A. R. Means, T. Tanaka, eds., Plenum Press, New York, p. 299.Google Scholar
  29. Spray, T. L. and Roberts, W. C., 1977, Changes in saphenous veins used as aortocoronary bypass grafts, Am. Heart J., 94: 500.PubMedCrossRefGoogle Scholar
  30. Tracy, R. E., Strong, J. P., Toca, V. T., and Lopez, C. R., 1979, Atheronecrosis and its fibroproliferative base and cap in the thoracic aorta, Lab. Invest., 41: 546.PubMedGoogle Scholar
  31. Unni, K. K., Kottke, B. A., Titus, J. L., Frye, R. L., Wallace, R. B., and Brown, A. L., 1974, Pathologic changes in aortocoronary saphenous vein grafts, Am. J. Cardiol, 34: 526.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Charles L. Seidel
    • 1
  • David Rickman
    • 1
  • Heidi Steuckrath
    • 1
  • Julius C. Allen
    • 1
  • Andrew M. Kahn
    • 1
    • 2
  1. 1.Department of MedicineBaylor College of MedicineHoustonUSA
  2. 2.Houston School of MedicineUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations