Cytosolic Calcium Ion Regulation in Cultured Endothelial Cells

  • Rachel E. Laskey
  • David J. Adams
  • Sherry Purkerson
  • Cornelis van Breemen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Endothelial cells profoundly affect the cardiovascular system by interacting with the blood at the luminal surface and with the underlying smooth muscle of the media. Endothelial secretions carry out multiple and sometimes opposing functions. For example, thrombotic and antithrombotic, proliferative and antiproliferative, as well as vasodilatory and vasoconstrictor substances have been identified with the endothelium.


Endothelial Cell Human Umbilical Vein Endothelial Cell Aortic Endothelial Cell Single Channel Conductance Bovine Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., Barakeh, J., Laskey, R., and van Breemen, C., 1989a, Ion channels and regulation of intracellular calcium in vascular endothelial cells, FASEB J., 3: 2389.PubMedGoogle Scholar
  2. Adams, D. J., van Breemen, C., Cannell, M. B., and Sage, S. O., 1989b, Na+-Ca2+ exchange in fura-2 loaded cultured bovine pulmonary artery endothelial monolayers, J. Physiol., 418: 183P.Google Scholar
  3. Aisaka, K., Gross, S. S., Griffith, O. W., and Levi, R., 1989, NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: Does nitric oxide regulate blood pressure in vivo?, Biochem. Biophys. Res. Commun., 160: 881.PubMedCrossRefGoogle Scholar
  4. Beny, J. L. and Gribi, F., 1989, Dye and electrical coupling of endothelial cells in situ, Tissue and Cell, 21: 797.PubMedCrossRefGoogle Scholar
  5. Berridge, M., 1990, Calcium oscillations, J. Biol. Chem., 265: 9583.PubMedGoogle Scholar
  6. Bregestovski, P., Bakhramov, A., Danilov, S., Moldobaeva, A., and Takeda, K., 1988, Histamine-induced inward currents in cultured endothelial cells from human umbilical vein, Br. J. Pharmacol., 95: 429.PubMedGoogle Scholar
  7. Cannell, M. B. and Sage, S. O., 1989, Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells, J. Physiol., 419: 555.PubMedGoogle Scholar
  8. Colden-Stanfield, M., Schilling, W. P., Ritchie, A. K., Eskin, S. G., Navarro, L. T., and Kunze, D., 1987, Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells, Circ. Res., 61: 632.PubMedGoogle Scholar
  9. Colden-Stanfield, M., Schilling, W. P., Passani, L. D., and Kunze, D. L., 1990, Bradykinin-induced potassium current in cultured bovine aortic endothelial cells, J. Membr. Biol, 116: 227.PubMedCrossRefGoogle Scholar
  10. Freay, A., Johns, A., Adams, D. J., Ryan, U. S., and van Breemen, C., 1989, Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells, Pflügers Arch., 414: 377.PubMedCrossRefGoogle Scholar
  11. Furchgott, R. F. and Zawadski, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373.PubMedCrossRefGoogle Scholar
  12. Ganz, P. and Alexander, R. W., 1985, New insights into the cellular mechanisms of vasospasm, Am. J. Cardiol, 56: 11E.CrossRefGoogle Scholar
  13. Hagiwara, H., Ohtsu, Y., Shimonaka, M., and Inada, Y., 1983, Ca2+-or Mg2+-dependent ATPase in plasma membrane of cultured endothelial cells from bovine carotid artery, Biochim. Biophys. Acta, 734: 133.PubMedCrossRefGoogle Scholar
  14. Harootunian, A. T., Kao, J. P. Y., and Tsien, R. Y., 1988, Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photoreleased Ins(l,4,5)P3, Ca2+ and Ca2+ buffer, Cold Spring Harbor Symp. Quant. Biol, 8: 935.CrossRefGoogle Scholar
  15. Jackson, W. F., 1988, Oscillations in active tension in hamster aortas: Role of the endothelium, Blood Vessels, 25: 144.PubMedGoogle Scholar
  16. Jacob, R., 1990, Calcium oscillations in electrically non-excitable cells, Biochim. Biophys. Acta, 1052: 427.PubMedCrossRefGoogle Scholar
  17. Jacob, R., Merritt, J. E., Hallam, T. J., and Rink, T. J., 1988, Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells, Nature, 335: 40.PubMedCrossRefGoogle Scholar
  18. Jayakody, R. L., Kappagoda, C. T., Senaratne, M. P. J., and Sreeharan, N., 1987, Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta, Br. J. Pharmacol., 91: 155.PubMedGoogle Scholar
  19. Johns, A., Lategan, T., Lodge, N., Ryan, U., van Breemen, C., and Adams, D. J., 1987, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells, Tissue and Cell, 19: 733.PubMedCrossRefGoogle Scholar
  20. Lambert, T. L., Kent, R. S., and Whorton, A. R., 1986, Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells, J. Biol. Chem., 261: 15288.PubMedGoogle Scholar
  21. Lansman, J. B., Hallam, T. J., and Rink, T. J., 1987, Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers?, Nature, 325: 811.PubMedCrossRefGoogle Scholar
  22. Laskey, R. E. and van Breemen, C., 1989, Lack of evidence for active Na+/Ca2+ exchange in cultured endothelial cells, FASEB J., 3: A879.Google Scholar
  23. Laskey, R. E., Adams, D. J., Johns, A., Rubanyi, G. M., and van Breemen, C., 1990, Membrane potential and Na+-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria, J. Biol Chem., 265: 2613.PubMedGoogle Scholar
  24. Lockette, W. E., Otshuba, Y., Carretero, O. A., 1986, Endothelium-dependent relaxation in hypertension, Hypertension, 8(Suppl. II): 11–61.Google Scholar
  25. Lodge, N. J., Adams, D. J., Johns, A., Ryan, U. S., and van Breemen, C., 1988, Calcium activation of endothelial cells, in: “Resistance Arteries”, W. Halpern, ed., Perinatology Press, Ithaca, p. 152.Google Scholar
  26. Long, C. J. and Stone, T. W., 1985, The release of endothelium-derived relaxant factor is calcium dependent, Blood Vessels, 22: 205.PubMedGoogle Scholar
  27. Lopez-Jaramillo, P., Gonzalez, M. C., Palmer, R. M. J., and Moncada, S., 1990, The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone, Br. J. Pharmacol, 101: 489.PubMedGoogle Scholar
  28. Luckhoff, A. and Busse, R., 1990a, Refilling of endothelial calcium stores without bypassing the cytosol, FEBS Lett., 275: 108.CrossRefGoogle Scholar
  29. Luckhoff, A. and Busse, R., 1990b, Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents, Naunyn-Schmiedeberg’s Arch. Pharmacol., 342: 94.CrossRefGoogle Scholar
  30. Luckhoff, A., Pohl, U., Mulsch, A., and Busse, R., 1988, Differential role of extra-and intracellular calcium on EDRF and prostacyclin from cultured endothelial cells, Br. J. Pharmacol., 95: 189.PubMedGoogle Scholar
  31. Meyer, B., Schmidt, K., Humbert, R., and Bohme, E., 1989, Biosynthesis of endothelium-derived relaxing factor: A cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase, Biochem. Biophys. Res. Commun., 164: 678.CrossRefGoogle Scholar
  32. Neylon, C. B. and Irvine, R. F., 1990, Synchronized repetitive spikes in cytoplasmic calcium in confluent monolayers of human umbilical vein endothelial cells, FEBS Lett., 275: 173.PubMedCrossRefGoogle Scholar
  33. Nilius, B., 1990, Permeation properties of a non-selective cation channel in human vascular endothelial cells, Pflügers Arch., 416: 609.PubMedCrossRefGoogle Scholar
  34. Olesen, S. P., Davies, P. F., and Clapham, D. E., 1988a, Muscarinic-activated K+ current in bovine aortic endothelial cells, Circ. Res., 62: 1059.PubMedGoogle Scholar
  35. Olesen, S. P., Clapham, D. E., and Davies, P. F., 1988b, Haemodynamic shear stress activates a K+ current in vascular endothelial cells, Nature, 331: 168.PubMedCrossRefGoogle Scholar
  36. Oyama, Y., Kawasaki, H., Hattori, Y., and Kauno, M., 1986, Attenuation of endothelium-dependent relaxation in aorta from diabetic rat, Eur. J. Pharmacol, 131: 75.CrossRefGoogle Scholar
  37. Palmer, R. M., Ashton, D. S., and Moncada, S., 1988, Vascular endothelial cells synthesize nitric oxide from L-arginine, Nature, 333: 664.PubMedCrossRefGoogle Scholar
  38. Rees, D. D., Palmer, M. J., and Moncada, S., 1989, Role of endothelium-derived nitric oxide in the regulation of blood pressure, Proc. Nat’l. Acad. Sci. U.S.A., 86: 3375.CrossRefGoogle Scholar
  39. Rusko, J., Tanzi, F., van Breemen, C., and Adams, D. J., 1991, Gating and block of Ca2+-activated potassium channels in native endothelial cells from rabbit aorta, Biophys. J., 59: 81a.Google Scholar
  40. Sage, S. O., Adams, D. J., and van Breemen, C., 1989, Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers, J. Biol. Chem., 264: 6.PubMedGoogle Scholar
  41. Schilling, W. P., Ritchie, A. K., Navarro, L. T., and Eskin, S. G., 1988, Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells, Am. J. Physiol., 255: C219.Google Scholar
  42. Segal, S. S. and Duling, B. R., 1987, Propagation of vasodilation in resistance vessels of the hamster: Development and review of a working hypothesis, Circ. Res., 61: 1120.Google Scholar
  43. Singer, H. A. and Peach, M. J., 1982, Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta, Hypertension, 4(Suppl. II): 11–19.Google Scholar
  44. Silver, M. R. and Decoursey, T. E., 1990, Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+, J. Gen. Physiol, 96: 109.PubMedCrossRefGoogle Scholar
  45. Suave, R., Parent, L., Simoneau, C., and Roy, G., 1988, External ATP triggers a biphasic activation process of a calcium-independent K+ channel in cultured bovine aortic endothelial cells, Pflügers Arch., 412: 469.CrossRefGoogle Scholar
  46. Spedding, M., Schini, V., Schoeffter, P., and Miller, R. C., 1986, Calcium channel activation does not increase release of endothelial-derived relaxant factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in smooth muscle, J. Cardiovasc. Pharmacol, 8: 1130.PubMedCrossRefGoogle Scholar
  47. Takeda, K. and Klepper, M., 1990, Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells: A review, Blood Vessels, 27: 169.PubMedGoogle Scholar
  48. Takeda, K., Schini, V., and Stoeckel, H., 1987, Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells, Pflügers Arch., 410: 385.PubMedCrossRefGoogle Scholar
  49. Thastrup, O., Dawson, A., Scharff, O., Foder, B., Cullen, P., Drobak, B., Bjerrum, P., Christensen, S., and Hanley, N., 1989, Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage, Agents and Actions, 27: 17.PubMedCrossRefGoogle Scholar
  50. Vallance, P., Collier, J., and Moncada, S., 1989, Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man, Lancet, 2: 997.PubMedCrossRefGoogle Scholar
  51. Van Breemen, C., Cauvin, C., Johns, A., Leijten, P., and Yamamoto, H., 1986, Ca2+ regulation of vascular smooth muscle, Fed. Proc, 45: 2746.PubMedGoogle Scholar
  52. Whorton, A. R., Willis, C E., Kent, R. S., and Young, S. L., 1984, The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells, Lipids, 19: 17.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Rachel E. Laskey
    • 1
  • David J. Adams
    • 1
  • Sherry Purkerson
    • 1
  • Cornelis van Breemen
    • 1
  1. 1.Department of Molecular and Cellular PharmacologyUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations