Advertisement

Pharmacomechanical Coupling: The Membranes Talk to the Crossbridges

  • Andrew P. Somlyo
  • Toshio Kitazawa
  • Sei Kobayashi
  • Ming Cui Gong
  • Avril V. Somlyo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)

Abstract

Excitation-contraction (E-C) coupling in smooth muscle (Table 1) is distinguished by the importance of pharmacomechanical coupling: a complex of signal transduction mechanisms that is not directly dependent on changes in membrane potential (Somlyo and Somlyo, 1968). In contrast, in striated muscle electromechanical coupling is the dominant E-C coupling mechanism. We shall emphasize pharmacomechanical coupling in this overview, not only because of its importance and our interest in it, but also because there has been major progress in our understanding of its molecular mechanisms, particularly the mechanisms of Ca2+ release and modulation of Ca2+-sensitivity.

Keywords

Smooth Muscle Vascular Smooth Muscle Myosin Light Chain Smooth Muscle Myosin Myosin Light Chain Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, P. I. and Jones, A. W., 1988, Ca dependence of Na influx during treatment of rabbit aorta with NE and high K solutions, Am. J. Physiol, 254: C75.PubMedGoogle Scholar
  2. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38: 227.PubMedGoogle Scholar
  3. Adelstein, R. S., Conti, M. A., and Hathaway, D. R., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′: 5′-monophosphate-dependent protein kinase, J. Biol. Chem., 253: 8347.PubMedGoogle Scholar
  4. Baron, C. B., Cunningham, M., Strauss, J. F., and Coburn, R. F., 1984, Pharmacomechanical coupling in smooth muscle may involve phos-phatidylinositol metabolism, Proc. Nat’l. Acad. Sci. U.S.A., 81: 6899.CrossRefGoogle Scholar
  5. Bean, B. P., Sturek, M., Puga, A., and Hermsmeyer, K., 1986, Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihy-dropyridine drugs, Circ. Res., 59: 229.PubMedGoogle Scholar
  6. Benham, C. D. and Tsien, R. W.. 1987a, Calcium-permeable channels in vascular smooth muscle: Voltage-regulated, receptor-operated, and leak channels, in: “Cell Calcium and the Control of Membrane Transport”, L. J. Mandel and D. C. Eaton, eds., Soc. Gen. Physiol., 40: 45.Google Scholar
  7. Benham, C. D. and Tsien, R. W., 1987b, A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle, Nature, 328: 275.PubMedCrossRefGoogle Scholar
  8. Benham, C. D. and Tsien, R. W., 1988, Noradrenaline modulation of calcium channels in single smooth cells from rabbit ear artery, J. Physiol., 404: 767.PubMedGoogle Scholar
  9. Benham, C. D., 1989, ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery, J. Physiol., 419: 689.PubMedGoogle Scholar
  10. Berridge, M. J., 1988, Inositol lipids and calcium signaling, Proc. R. Soc. Lond. B, 234: 359PubMedCrossRefGoogle Scholar
  11. Bevan, J. A. and Verity, M. A., 1966, Postganglionic sympathetic delay in vascular smooth muscle, J. Pharmacol. Exp. Ther., 152: 221.PubMedGoogle Scholar
  12. Bond, M., Kitazawa, T., Somlyo, A. P., and Somlyo, A. V., 1984a, Release and recycling of calcium by the sarcoplasmic reticulum in guinea pig portal vein smooth muscle, J. Physiol., 355: 677.PubMedGoogle Scholar
  13. Bond, M., Shuman, H., Somlyo, A. P., and Somlyo, A. V., 1984b, Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle, J. Physiol., 357: 185.PubMedGoogle Scholar
  14. Bozler, E., 1948, Conduction, automaticity and tonus of visceral smooth muscles, Experientia, 4: 213.CrossRefGoogle Scholar
  15. Broderick, R. and Somlyo, A. P., 1987, Calcium and magnesium transport in situ mitochondria: Electron probe analysis of vascular smooth muscle, Circ. Res., 61: 523.PubMedGoogle Scholar
  16. Bülbring, E., 1955, Correlation between membrane potential, spike discharge and tension in smooth muscle, J. Physiol, 128: 200.PubMedGoogle Scholar
  17. Bülbring, E. and Szurszewski, J. H., 1974, The stimulant action of noradrenaline (a-action) on guinea-pig myometrium compared with that of acetylcholine, Proc. R. Soc. Lond. B, 185: 225.PubMedCrossRefGoogle Scholar
  18. Butler, T. M. and Davies, R. E., 1980, High-energy phosphates in smooth muscle, in: “The Handbook of Physiology; The Cardiovascular System: Vascular Smooth Muscle”, D. F. Bohr, A. P. Somlyo, and H. V. Sparks Jr., eds., American Physiological Society, Bethesda, p. 237.Google Scholar
  19. Butler, T. M., Siegman, M. J., and Mooers, S. U., 1983, Chemical energy usage during shortening and work production in mammalian smooth muscle, Am. J. Physiol, 244: C234.PubMedGoogle Scholar
  20. Chacko, S. and Eisenberg, E., 1990, Cooperativity of actin-activated ATPase of gizzard heavy meromyosin in the presence of gizzard tropomyosin, J. Biol. Chem., 265: 2105.PubMedGoogle Scholar
  21. Chadwick, C. C., Saito, A. R., and Fleischer, S., 1990, Isolation and characterization of the inositol trisphosphate receptor from smooth muscle, Proc. Nat’l. Acad. Sci. U.S.A., 87: 2132.CrossRefGoogle Scholar
  22. Chilvers, E. R., Challis, R. A. J., Barnes, P. J., and Nahorski, S. R., 1989, Mass changes of inositol (l,4,5)-trisphosphate in trachealis muscle following agonist stimulation, Eur. J. Pharmacol., 164: 587.PubMedCrossRefGoogle Scholar
  23. Conti, M. A. and Adelstein, R. S., 1981, The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′-5′ cAMP-dependent protein kinase, J. Biol. Chem., 256: 3178.PubMedGoogle Scholar
  24. Desilets, M., Driska, S. P., and Baumgarten, C. M., 1989, Current fluctuations and oscillations in smooth muscle cells from hog carotid artery: Role of the sarcoplasmic reticulum, Circ. Res., 65: 708.PubMedGoogle Scholar
  25. Droogmans, G., Raeymaekers, L., and Casteels, R., 1977, Electro-and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery, J. Gen. Physiol, 70: 129.PubMedCrossRefGoogle Scholar
  26. Droogmans, G., Declerck, I., and Casteels, R., 1987, Effect of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells, Pflügers Arch., 409: 7.PubMedCrossRefGoogle Scholar
  27. Duncan, R. A., Krabowski Jr., J. J., Davis, J. S., Poison, J. B., Coffey, R. G., Shimoda, T., and Szentivanyi, A., 1987, Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus, Biochem. Pharmacol., 36: 307.PubMedCrossRefGoogle Scholar
  28. Edelman, A. M., Lin, W.-H., Osterhout, D. J., Bennett, M. K., Kennedy, M. B., and Krebs, E. G., 1990, Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase, Mol Cell Biol, 98: 87.Google Scholar
  29. Ehrlich, B. E. and Watras, J., 1988, Inositol 1,4,5-trisphosphate activated by a channel from smooth muscle sarcoplasmic reticulum, Nature, 336: 583.PubMedCrossRefGoogle Scholar
  30. Evans, D. J. L., Schild, H. O., and Thesleff, S., 1958, Effects of drugs on depolarized plain muscle, J. Physiol, 143: 474.PubMedGoogle Scholar
  31. Fabiato, A., 1985, Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell, J. Gen. Physiol, 85: 247.PubMedCrossRefGoogle Scholar
  32. Fleckenstein, A., 1983, “Calcium Antagonism in Heart and Smooth Muscle: Experimental Facts and Therapeutic Prospects”, John Wiley and Sons, New York.Google Scholar
  33. Fujiwara, T., Itoh, T., Kubota, Y., and Kuriyama, H., 1989, Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery, J. Physiol, 408: 535.PubMedGoogle Scholar
  34. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P40O, Nature, 342: 32.PubMedCrossRefGoogle Scholar
  35. Furuichi, T., Shiota, C., and Mikoshiba, A., 1990, Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissue, FEBS Lett., 267: 85.PubMedCrossRefGoogle Scholar
  36. Gerthoffer, W. T., 1987, Dissociation of myosin phosphorylation and active tension during muscarinic stimulation of tracheal smooth muscle, J. Pharmacol. Exp. Ther., 240: 8.PubMedGoogle Scholar
  37. Goldman, Y. E., Hibberd, M. G., and Trentham, D. R., 1984, Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine 5′-trisphosphate, J. Physiol, 354: 577.PubMedGoogle Scholar
  38. Gorecka, A., Aksoy, M. O., and Hartshorne, D. J., 1976, The effect of phosphorylation of gizzard myosin on actin activation, Biochem. Biophys. Res. Commun., 71: 325.PubMedCrossRefGoogle Scholar
  39. Hai, C.-M. and Murphy, R. A., 1989, Ca2+, cross-bridge phosphorylation, and contraction, Ann. Rev. Physiol, 51: 285.CrossRefGoogle Scholar
  40. Hai, C.-M., and Murphy, R. A., 1989, Crossbridge phosphorylation and regulation of the latch state in smooth muscle, Am. J. Physiol, 254: C99.Google Scholar
  41. Hashimoto, Y. and Soderling, T. R., 1990, Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: Comparative study of the phosphorylation sites, Arch. Biochem. Biophys., 278: 41.PubMedCrossRefGoogle Scholar
  42. Himpens, B. and Casteels, R., 1987, Measurement by quin2 of changes of the intracellular calcium concentration in strips of the rabbit ear artery and of the guinea-pig ileum, Pflügers Arch., 408: 32.PubMedCrossRefGoogle Scholar
  43. Himpens, B. and Somlyo, A. P., 1988, Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle, J. Physiol, 395: 507.PubMedGoogle Scholar
  44. Himpens, B., Matthijs, G., Somlyo, A. V., Butler, T. M., and Somlyo, A. P., 1988, Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle, J. Gen. Physiol, 92: 713.PubMedCrossRefGoogle Scholar
  45. Himpens, B., Matthijs, G., and Somlyo, A. P., 1989, Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle, J. Physiol, 413: 489.PubMedGoogle Scholar
  46. Himpens, B., Kitazawa, T., and Somlyo, A. P., 1990, Agonist dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle, Pflügers Arch., 417: 21.PubMedCrossRefGoogle Scholar
  47. Horiuti, K., Somlyo, A. V., Goldman, Y. E., and Somlyo, A. P., 1989, Kinetics of contraction initiated by flash photolysis of caged adenosine trisphosphate in tonic and phasic smooth muscle, J. Gen. Physiol, 94: 769.PubMedCrossRefGoogle Scholar
  48. Iino, M., 1986, Calcium dependent inositol trisphosphate-induced calcium release in the guinea-pig taenia caeci, Biochem. Biophys. Res. Commun., 142: 47.CrossRefGoogle Scholar
  49. Iino, M., 1989, Calcium-induced calcium release mechanism in guinea pig taenia caeci, J. Gen. Physiol, 94: 363.Google Scholar
  50. Iino, M., 1990, Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca-release in smooth muscle cells of the guinea-pig taenia caeci, J. Gen. Physiol, 95: 6.CrossRefGoogle Scholar
  51. Ikebe, M., Hartshorne, D. J., and Elzinga, M., 1987, Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase, J. Biol. Chem., 262: 9569.PubMedGoogle Scholar
  52. Ikebe, M. and Reardon, S., 1990, Phosphorylation of smooth myosin light chain kinase by smooth muscle Ca2+/calmodulin-dependent multifunctional protein kinase, J. Biol. Chem., 265: 8975.PubMedGoogle Scholar
  53. Imaizumi, Y., Muraki, K., Takeda, M., and Watanabe, M., 1989, Measurement and stimulation of noninactivating Ca current in smooth muscle cells, Am. J. Physiol, 256: C880.PubMedGoogle Scholar
  54. Inoue, R. and Isenberg, G., 1990, Acetylcholine activates nonselective cation channels in guinea pig ileum through a G-protein, Am. J. Physiol, 258: C1173.PubMedGoogle Scholar
  55. Ishikawa, T., Chikiwa, T., Hagiwara, M., Mamiya, S., Saitoh, M., and Hidaka, H., 1988, ML-9 inhibits the vascular contraction via the inhibition of myosin light chain phosphorylation, Mol Pharmacol., 33: 598.PubMedGoogle Scholar
  56. Itoh, T., Kuriyama, H., and Suzuki, H., 1983, Differences and similarities in the noradrenaline-and caffeine-induced mechanical responses in the rabbit mesenteric artery, J. Physiol, 337: 609.PubMedGoogle Scholar
  57. Johansson, B. and Somlyo, A., 1980, Electrophysiology and excitation-contraction coupling, in: “The Handbook of Physiology; The Cardiovascular System: Vascular Smooth Muscle”, D. F. Bohr, A. P. Somlyo, and H. V. Sparks Jr., eds., American Physiological Society, Bethesda, p. 301.Google Scholar
  58. Jones, A. W., 1980, Content and fluxes of electrolytes, in: “The Handbook of Physiology; The Cardiovascular System: Vascular Smooth Muscle”, D. F. Bohr, A. P. Somlyo, and H. V. Sparks Jr., eds., American Physiological Society, Bethesda, p. 253.Google Scholar
  59. Kaplan, J. H., Kennedy, B. G., and Somlyo, A. P., 1987, Calcium-stimulated sodium efflux from rabbit vascular smooth muscle, J. Physiol, 388: 245.PubMedGoogle Scholar
  60. Karaki, H., 1989, Ca2+ localization and sensitivity in vascular smooth muscle, Trends Pharmacol. Sci., 10: 320.PubMedCrossRefGoogle Scholar
  61. Kenney, R. E., Hoar, P. E., and Kerrick, W. G. L., 1990, The relationship between ATPase activity, isometric force, and myosin light-chain phosphorylation and thiophosphorylation in skinned smooth muscle fiber bundles from chicken gizzard, J. Biol. Chem., 265: 8642.PubMedGoogle Scholar
  62. Khalil, R. A. and van Breemen, C., 1988, Sustained contraction of vascular smooth muscle: Calcium influx or C-kinase activation?, J. Pharmacol. Exp. Ther., 244: 537.PubMedGoogle Scholar
  63. Kitazawa, T., Kobayashi, S., Horiuti, T., Somlyo, A. V., and Somlyo, A. P., 1989, Receptor-coupled, permeabilized smooth muscle: Role of the phos-phatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+, J. Biol. Chem., 264: 5339.PubMedGoogle Scholar
  64. Kitazawa, T. and Somlyo, A. P., 1990, Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle, Biochem. Biophys. Res. Commun., 172: 1291.PubMedCrossRefGoogle Scholar
  65. Kitazawa, T., Gaylinn, B. D., Denney, G. H., and Somlyo, A. P., 1991, G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation, J. Biol. Chem., 266: 1708.PubMedGoogle Scholar
  66. Kobayashi, S., Kanaide, H., and Nakamura, M., 1986, Complete overlap of caffeine-and K+ depolarization-sensitive intracellular calcium storage site in cultured rat arterial smooth muscle cells, J. Biol. Chem., 261: 15709.PubMedGoogle Scholar
  67. Kobayashi, S., Somlyo, A. P., and Somlyo, A. V., 1988, Guanine nucleotide-and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery, J. Physiol, 403: 601.PubMedGoogle Scholar
  68. Kobayashi, S., Somlyo, A. V., and Somlyo, A. P., 1988, Heparin inhibits the inositol 1,4,5-trisphosphate-dependent but not the independent calcium release induced by guanine nucleotide in vascular smooth muscle, Biochem. Biophys. Res. Commun., 153: 625.PubMedCrossRefGoogle Scholar
  69. Kobayashi S., Kitazawa, T., Somlyo, A. V., and Somlyo, A. P., 1989, Cytosolic heparin inhibits muscarinic and α-adrenergic Ca2+ release in smooth muscle, J. Biol. Chem., 264: 17997.PubMedGoogle Scholar
  70. Kobayashi, S., Gong, M. C., Somlyo, A. V., and Somlyo, A. P., 1991, Ca2+-channel blockers distinguish between G-protein-coupled, pharmaco-mechanical Ca2+ release and Ca2+ sensitization in smooth muscle, Am. J. Physiol., 260:C364.PubMedGoogle Scholar
  71. Kowarski, D., Shuman, H., Somlyo, A. P., and Somlyo, A. V., 1985, Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle, J. Physiol, 366: 153.PubMedGoogle Scholar
  72. Krisanda, J. M. and Paul, R. J., 1984, Energetics of isometric contraction in porcine carotid artery, Am. J. Physiol, 246: C510.PubMedGoogle Scholar
  73. Kuriyama, H., Ito, Y., Kitamura, K., and Itoh, T., 1982, Factors modifying contraction-relaxation cycle in vascular smooth muscles, Am. J. Physiol, 243: H641.PubMedGoogle Scholar
  74. Loirand, G., Pacaud, P., Mironneau, C., and Mironneau, J., 1990, GTP-binding proteins mediate noradrenaline effects on calcium and chloride currents in rat portal vein myocytes, J. Physiol, 428: 517.PubMedGoogle Scholar
  75. Magliola, L. and Jones, A. W., 1987, Depolarization-stimulated 42K+ efflux in rat aorta is calcium-and cellular volume-dependent, Circ. Res., 61: 1.PubMedGoogle Scholar
  76. Mangel, A. W., Nelson, D. O., Rabovsky, J. L., Prosser, C. L., and Connor, J. A., 1982, Depolarization-induced contractile activity of smooth muscle in calcium-free solution, Am. J. Physiol, 242: C36.PubMedGoogle Scholar
  77. Miller-Hance, W. C., Miller, J. R., Wells, J. N., Stull, J. T., and Kamm, K. E., 1988, Biochemical events associated with activation of smooth muscle contraction, J. Biol. Chem., 263: 13979.PubMedGoogle Scholar
  78. Moreland, S., Moreland, R. S., and Singer, H. A., 1986, Apparent dissociation between myosin light chain phosphorylation and maximal velocity of shortening in KCl depolarized swine carotid artery: Effect of temperature and KCl concentration, Pflügers Arch., 408: 139.CrossRefGoogle Scholar
  79. Morgan, J. P. and Morgan, K. G., 1984, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol, 351: 155.PubMedGoogle Scholar
  80. Motulsky, H. J., Snavely, M. D., Hughes, R. J., and Insel, P. A., 1983, Interaction of verapamil and other calcium channel blockers with α1-and β2-adrenergic receptors, Circ. Res., 52: 226.PubMedGoogle Scholar
  81. Murphy, R. A., 1988, Special Topic: Contraction in smooth muscle cells, Ann. Rev. Physiol, 51: 275.CrossRefGoogle Scholar
  82. Nelson, M. T., Standen, N. B., Brayden, J. E. and Worley III, J. F., 1988, Noradrenaline contracts arteries by activating voltage-dependent calcium channels, Nature, 336: 382.PubMedCrossRefGoogle Scholar
  83. Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone, Am. J. Physiol, 259: C3.PubMedGoogle Scholar
  84. Nishikawa, M., Shirokawa, S., and Adelstein, R. S., 1985, Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C., J. Biol Chem., 260: 8978.PubMedGoogle Scholar
  85. Nishimura, J., Kobler, M., and van Breemen, C., 1988, Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle, Biochem. Biophys. Res. Commun., 157: 677.PubMedCrossRefGoogle Scholar
  86. Pape, P. C., Konishi, M., Baylor, S. M., and Somlyo, A. P., 1988, Excitation-contraction coupling in skeletal muscle fibers injected with the InsP3 blocker, heparin, FEBS Lett., 235: 57.PubMedCrossRefGoogle Scholar
  87. Paul, R. J., Doerman, G., Zeugner, C., and Rüegg, J. C., 1983, The dependence of unloaded shortening velocity on Ca++, calmodulin, and duration of contraction in “chemically skinned” smooth muscle, Circ. Res., 53: 342.PubMedGoogle Scholar
  88. Paul, R. J., 1990, Smooth muscle energetics and theories of crossbridge regulation, Am. J. Physiol, 258: C369.PubMedGoogle Scholar
  89. Pfitzer, G., Hofmann, F., DiSalvo, J., and Rüegg, J. C., 1984, cGMP and cAMP inhibit tension development in skinned coronary arteries, Pflügers Arch., 401: 277.PubMedCrossRefGoogle Scholar
  90. Rembold, C. M. and Murphy, R. A., 1988, Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle, Circ. Res., 63: 593.PubMedGoogle Scholar
  91. Rembold, C., 1990, Modulation of the [Ca2+] sensitivity of myosin phosphorylation in intact swine arterial smooth muscle, J. Physiol, 429: 77.PubMedGoogle Scholar
  92. Rüegg, J. C., Sparrow, M. P., and Mrwa, U., 1981, Cyclic-AMP mediated relaxation of chemically skinned fibres of smooth muscle, Pflügers Arch., 390: 198.PubMedCrossRefGoogle Scholar
  93. Rüegg, J. C. and Paul, R. J., 1982, Calmodulin and cyclic AMP-dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers, Circ. Res., 50: 394.PubMedGoogle Scholar
  94. Sellers, J. R., Spudich, J. A., and Sheetz, M. P., 1985, Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments, J. Cell. Biol, 101: 1897.PubMedCrossRefGoogle Scholar
  95. Siegman, M. J., Butler, T. M., and Mooers, S. U., 1985, Energetics and regulation of crossbridge states in mammalian smooth muscle, Experientia, 41: 1020.PubMedCrossRefGoogle Scholar
  96. Silver, P. J. and Stull, J. T., 1984, Phosphorylation of myosin light chain and Phosphorylase in tracheal smooth muscle in response to KCl and carbachol, Mol. Pharmacol., 25: 267.PubMedGoogle Scholar
  97. Small, J. V. and Sobieszek, A., 1977, Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000-Mr light chain of myosin, Eur. J. Biochem., 76: 521.PubMedCrossRefGoogle Scholar
  98. Smith, J. B., Smith, L., and Higgins, B. L., 1985, Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells, J. Biol. Chem., 260: 14413.PubMedGoogle Scholar
  99. Smith, J. B., Dwyer, S. C., and Smith, L., 1989, Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization, J. Biol. Chem., 264: 831.PubMedGoogle Scholar
  100. Somlyo, A. P. and Somlyo, A. V., 1968, Electromechanical and pharmaco-mechanical coupling in vascular smooth muscle, J. Pharmacol Exp. Ther., 59: 129.Google Scholar
  101. Somlyo, A. P. and Somlyo, A. V., 1971, Electrophysiological correlates of the inequality of maximal vascular smooth muscle contraction elicited by drugs, in: “Vascular Neuroeffector Systems”, J. A. Bevan, R. F. Furchgott, and A. P. Somlyo, eds., Karger, Basel, p. 216.Google Scholar
  102. Somlyo, A. P., Devine, C. E., Somlyo, A. P., and North, S. R., 1971, Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium free solutions, J. Cell Biol, 51: 722.PubMedCrossRefGoogle Scholar
  103. Somlyo, A. P., Somlyo, A. V., and Smiesko, V., 1972, Cyclic AMP and vascular smooth muscle, in: “Advances in Cyclic Nucleotide Research: Vol. I”, R. Paoletti and G. A. Robinson, eds., Raven Press, New York, p. 175.Google Scholar
  104. Somlyo, A. P. and Somlyo, A. V., 1975, Ultrastructure of smooth muscle, in: “Methods in Pharmacology, Vol. 3”, E. E. Daniels and D. M. Paton, eds., Plenum Press, New York, p. 3.Google Scholar
  105. Somlyo, A. P. and Somlyo, A. V., 1985, Excitation-contraction coupling and the ultrastructure of smooth muscle, Circ. Res., 57: 497.PubMedGoogle Scholar
  106. Somlyo, A. P., Somlyo, A. V., Bond, M., Broderick, R., Goldman, Y. E., Shuman, H., Walker, J. W., and Trentham, D. R., 1987, Calcium and magnesium movements in cells and the role of inositol trisphosphate in muscle, in: “Cell Calcium and Control of Membrane Support”, L. J. Mandel and D. C. Eaton, eds., Soc. Gen. Physiol, 42: 77.Google Scholar
  107. Somlyo, A. P., Walker, J. W., Goldman, Y. E., Trentham, D. R., Kobayashi, S., Kitazawa, T., and Somlyo, A. V., 1988, Inositol trisphosphate, calcium and muscle contraction, Phil Trans. R. Soc. Lond. B, 320: 399.CrossRefGoogle Scholar
  108. Somlyo, A. P. and Himpens, B., 1989, Cell calcium and its regulation in smooth muscle, FASEB J., 3: 2266.PubMedGoogle Scholar
  109. Somlyo, A. P., Kitazawa, T., Himpens, B., Matthijs, G., Horiuti, K., Kobayashi, S., Goldman, Y. E., and Somlyo, A. V., 1989, Modulation of Ca2+-sensitivity and of the time course of contraction in smooth muscle: A major role of protein phosphatases?, in: “Adv. Prot. Phosphatases; Vol. 5”, W. Merleude and J. DiSalvo, eds., Leuven University Press, Leuven, p. 181.Google Scholar
  110. Somlyo, A. P. and Somlyo, A. V., 1990, Flash photolysis studies of excitation-contraction coupling, regulation, and contraction in smooth muscle, Ann. Rev. Physiol, 52: 857.CrossRefGoogle Scholar
  111. Somlyo, A. P. and Somlyo, A. V., 1991, Smooth muscle structure and function, in: “The Heart and Cardiovascular System, Vol. 1”, H. A. Fozzard, R. B. Jennings, E. Haber, A. M. Katz, and H. E. Morgan, eds., Raven Press, New York, in press.Google Scholar
  112. Somlyo, A. V. and Somlyo, A. P., 1967, Active state and catch-like state in rabbit main pulmonary artery., J. Gen. Physiol, 500: 168.Google Scholar
  113. Somlyo, A. V., Vinall, P., and Somlyo, A. P., 1969, Excitation-contraction coupling and electrical events in two types of vascular smooth muscle, Microvasc. Res., 1: 354.PubMedCrossRefGoogle Scholar
  114. Somlyo, A. V., Haeusler, G., and Somlyo, A. P., 1970, Cyclic adenosine-monophosphate: Potassium-dependent action on vascular smooth muscle membrane potential, Science, 169: 490.PubMedCrossRefGoogle Scholar
  115. Somlyo, A. V. and Somlyo, A. P., 1971, Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle, Science, 174: 955.PubMedCrossRefGoogle Scholar
  116. Somlyo, A. V., 1980, Ultrastructure of vascular smooth muscle, in: “The Handbook of Physiology; The Cardiovascular System: Vascular Smooth Muscle”, D. F. Bohr, A. P. Somlyo, and H. V. Sparks Jr., eds., American Physiological Society, Bethesda, p. 33.Google Scholar
  117. Somlyo, A. V., Bond, M., Somlyo, A. P., and Scarpa, A., 1985, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Nat’l. Acad. Sci. U.S.A., 82: 5231.CrossRefGoogle Scholar
  118. Somlyo, A. V., Goldman, Y. E., Fujimori, T., Bond, M., Trentham, D. R., and Somlyo, A. P., 1988, Cross-bridge kinetics, cooperativity and negatively strained cross-bridges in vertebrate muscle: A laser flash photolysis study, J. Gen. Physiol, 91: 165.PubMedCrossRefGoogle Scholar
  119. Somlyo, A. V., Horiuti, K., Kitazawa, T., Trentham, D. R., and Somlyo, A. P., 1990a, Kinetics of InsP3-induced Ca2+ release in smooth muscle isolated from guinea-pig portal vein, J. Physiol, 429: 14P.Google Scholar
  120. Somlyo, A. V., Kitazawa, T., Horiuti, K., Kobayashi, S., Trentham, D. R., and Somlyo, A. P., 1990b, Heparin-sensitive inositol trisphosphate signaling and the role of G-proteins in Ca2+ release and contractile regulation in smooth muscle, in: “Frontiers in Smooth Muscle Research”, N. Sperelakis and J. D. Wood, eds. Wiley-Liss, New York, p. 167.Google Scholar
  121. Sparrow, M. P., Pfitzer, G., Gagelmann, M., and Rüegg, J. C., 1984, Effects of calmodulin, Ca2+, and cAMP protein kinase on skinned tracheal smooth muscle, Am. J. Physiol, 246: C308.PubMedGoogle Scholar
  122. Sperelakis, N. and Ohya, Y., 1989, Electrophysiology of vascular smooth muscle. Physiol. Pathophysiol. Heart, II. Coronary Circ, 38: 773.Google Scholar
  123. Stull, J. T., Hsu, L.-C., Tansey, M. G., and Kamm, K. E., 1990, Myosin light chain kinase phosphorylation in tracheal smooth muscle, J. Biol Chem., 265: 16683.PubMedGoogle Scholar
  124. Tanner, J. A., Haeberle, J. R., and Meiss, R. A., 1988, Regulation of glycerinated smooth muscle contraction and relaxation by myosin phosphorylation, Am. J. Physiol, 255: C34.PubMedGoogle Scholar
  125. Tansey, M. G., Hori, M., Karaki, H., Kamm, K. E., and Stull, J. T., 1990, Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle, FEBS Lett., 270: 219.PubMedCrossRefGoogle Scholar
  126. Trapani, A., Matsuki, N., Abel, P. W., and Hermsmeyer, K., 1981, Norepinephrine produces tension through electromechanical coupling in rabbit ear artery, Eur. J. Pharmacol., 72: 87.PubMedCrossRefGoogle Scholar
  127. Twarog, B. M., 1974, Aspects of smooth muscle function in molluscan catch muscle, Physiol. Rev., 56: 829.Google Scholar
  128. Valdivia, C., Valdivia, H. H., Potter, B. V. L., and Coronado, R., 1990, Ca2+ release by inositol-trisphosphate in isolated triads of rabbit skeletal muscle, Biophys. J., 57: 1233.PubMedCrossRefGoogle Scholar
  129. Videbaek, L. M., Aalkjaer, C., Hughes, A. D., and Mulvany, M. J., 1990, Effect of pinacidil on ion permeability in resting and contracted resistance vessels, Am. J. Physiol, 259: H14.PubMedGoogle Scholar
  130. Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., and Trentham, D. R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature, 327: 249.PubMedCrossRefGoogle Scholar
  131. Warshaw, D. M., Desrosiers, J. M., Work, S. S., and Trybus, K. M., 1990, Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro, J. Cell Biol, 8: 453.CrossRefGoogle Scholar
  132. Wasserman, A. J., McClellan, G., and Somlyo, A. P., 1986, Cellular and subcellular transport of sodium, potassium, magnesium and calcium in sodium loaded vascular smooth muscle: Electron probe analysis, Circ. Res., 58: 790.PubMedGoogle Scholar
  133. Weber, A. and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Physiol Rev., 53: 612.PubMedGoogle Scholar
  134. Yagi, S., Becker, P. L., and Fay, F. S., 1988, Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurements on single cells, Proc. Nat’l. Acad. Sci. U.S.A., 85: 4109.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Andrew P. Somlyo
    • 1
  • Toshio Kitazawa
    • 1
  • Sei Kobayashi
    • 1
  • Ming Cui Gong
    • 1
  • Avril V. Somlyo
    • 1
  1. 1.Department of PhysiologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations