Calcium Homeostasis in Single Intact Smooth Muscle Cells

  • Edwin D. W. Moore
  • Peter L. Becker
  • Takeo Itoh
  • Fredric S. Fay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


The force of contraction of smooth muscle cells, is a function of the Ca2+ ion activity of the myoplasm (Fay et al., 1974). There has therefore been a tremendous effort directed at understanding Ca2+ homeostatic mechanisms, with experiments ranging the spectrum from isolated genes to intact cells. The work of the scientists in this laboratory has concentrated on the latter, Ca2+ regulation in intact, single smooth muscle cells that have been enzymatically isolated from the stomach muscularis of the toad Bufo marinus (Fay et al., 1982). These experiments became possible only because of key technological developments of the last decade. In particular, it was the rational design of ion-sensitive fluorescent dyes that could be used ratiometrically to measure ion concentrations in living cells (Grynkiewicz et al, 1985) and the marriage of this technique with digital imaging microscopy (Fay et al, 1986), which enabled our experimental approach.


Smooth Muscle Cell Myosin Light Chain Kinase Calmodulin Dependent Protein Kinase Stomach Smooth Muscle Calmodulin Binding Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S. and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem., 44: 921.CrossRefGoogle Scholar
  2. Becker, P. L., Singer, J. J., Walsh Jr., J. V., and Fay, F. S., 1989, Regulation of calcium concentration in voltage-clamped smooth muscle cells, Science, 244: 211.PubMedCrossRefGoogle Scholar
  3. Blaustein, M. P., 1974, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol., 70: 33.PubMedCrossRefGoogle Scholar
  4. Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science, 211: 495.PubMedCrossRefGoogle Scholar
  5. Fay, F. S., Fogarty, K., E., and Coggins, J. M., 1986, Analysis of molecular distribution in single cells using a digital imaging microscope, in: “Optical Methods in Cell Physiology”, P. DeWeer and B. Salzberg, eds., John Wiley and Sons, New York, p. 51.Google Scholar
  6. Fay, F. S., Hoffman, R., LeClaire, S., and Merriam, P., 1982, The preparation of individual smooth muscle cells from the stomach of Bufo marinus, Methods Enzymol., 85: 284.PubMedCrossRefGoogle Scholar
  7. Fay, F. S., Shlevin, H. H., Granger, W. C., and Taylor, S. R., 1974, Aequorin luminescence during activation of single smooth muscle cells, Nature, 506: 280.Google Scholar
  8. Geering, K. and Rossier, B. C., 1979, Purification and characterization of (Na+ + K+)-ATPase from toad kidney, Biochim. Biophys. Acta, 566: 157.PubMedGoogle Scholar
  9. Grynkiewicz, G., Poenie, M., and Tsien, R., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 260: 3440.PubMedGoogle Scholar
  10. Hansen, O. and Clausen, T., 1988, Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells, Am. J. Physiol, 254: C1.PubMedGoogle Scholar
  11. Harootunian, A. T., Kao, J. P. Y., Eckert, B. K., and Tsien, R. Y., 1989, Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes, J. Biol. Chem., 264: 19458.PubMedGoogle Scholar
  12. Ikebe, M., Stepinska, M., Kemp, B. E., Means, A. R., and Hartshorne, D. J., 1987, Proteolysis of smooth muscle myosin light chain kinase, J. Biol. Chem., 260: 13828.Google Scholar
  13. Itoh, T., Ikebe, M., Kargacin, G. J., Hartshorne, D. J., Kemp, B. E., and Fay, F. S., 1989, Effects of modulators of myosin light-chain kinase activity in single smooth muscle cells, Nature, 338: 6211.CrossRefGoogle Scholar
  14. Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol, 25: 593.CrossRefGoogle Scholar
  15. Kargacin, G. J., Ikebe, M., and Fay, F. S., 1990, Peptide modulators of myosin light chain kinase affect smooth muscle cell contraction, Am. J. Physiol, 259: C315.PubMedGoogle Scholar
  16. Lucchesi, P., Cooney, R. A., Mangsen-Baker, T., Honeyman, W., and Scheid, C. R., 1988, Assessment of transport capacity of plasmalemmal Ca2+ pump in smooth muscle, Am. J. Physiol, 255: C226.PubMedGoogle Scholar
  17. Lukas, T. J., Burgess, W. H., Prendergast, F. G., Lau, W., and Watterson, D. M., 1986, Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase, Biochemistry, 25: 1458.PubMedCrossRefGoogle Scholar
  18. Minta, A. and Tsien, R. Y., 1989, Fluorescent indicators for cytosolic sodium, J. Biol Chem., 264: 19449.PubMedGoogle Scholar
  19. Moore, E. D. W., Becker, P. L., Fogarty, K. E., Williams, D. A., and Fay, F. S., 1990, Ca2+ imaging in single living cells: Theoretical and practical issues, Cell Calcium, 11: 157.PubMedCrossRefGoogle Scholar
  20. Raeymaekers, L. and Jones, L. R., 1986, Evidence for the presence of phospho-lamban in the endoplasmic reticulum of smooth muscle, Biochim. Biophys. Acta, 882: 258.PubMedCrossRefGoogle Scholar
  21. Scheid, C. R. and Fay, F. S., 1984, β-Adrenergic effects on transmembrane 45Ca fluxes in isolated smooth muscle cells, Am. J. Physiol, 246: C431.PubMedGoogle Scholar
  22. Scheid, C. R., Honeyman, T. W., and Fay, F. S., 1979, Mechanism of β-adrener-gic relaxation of smooth muscle, Nature, 277: 32.PubMedCrossRefGoogle Scholar
  23. Siegman, M. J., Butler, T. M., Mooers, S. U., and Michalek, A., 1984, Ca2+ can affect Vmax without changes in myosin light chain phosphorylation in smooth muscle, Pflügers Arch., 401: 385.PubMedCrossRefGoogle Scholar
  24. Somlyo, A. P., 1985, Excitation-contraction coupling and the ultrastructure of smooth muscle, Circ. Res., 57: 497.PubMedGoogle Scholar
  25. Walsh, Jr., J. V., and Singer, J. J., 1987, Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique, Pflügers Arch., 408: 83.PubMedCrossRefGoogle Scholar
  26. Walsh, M. P., 1987, Caldesmon, A major actin-and calmodulin-binding protein of smooth muscle, in: “Regulation and Contraction of Smooth Muscle”, M. J. Siegman, A. P. Somlyo, and N. L. Stephens, eds., Alan R. Liss, New York, p. 119.Google Scholar
  27. Williams, D. A. and Fay, F. S., 1986, Calcium transients and resting levels in isolated cells as monitored with quin-2, Am. J. Physiol, 250: C779.PubMedGoogle Scholar
  28. Williams, D. A. and Fay, F. S., 1990, Intracellular calibration of the fluorescent calcium indicator fura-2, Cell Calcium, 11: 75.PubMedCrossRefGoogle Scholar
  29. Winder, S. J. and Walsh, M. P., 1989, Smooth muscle calponin, Biochem. Soc. Trans., 17: 786.Google Scholar
  30. Wuytack, F., De Schutter, G., and Casteels, R., 1981, Partial purification of the (Ca2+ and Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system, Biochem. J., 198: 265.PubMedGoogle Scholar
  31. Yagi, S., Becker, P. L., and Fay, F. S., 1988, Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurements on single cells, Proc. Nat’l Acad. Sci. U.S.A., 85: 4109.CrossRefGoogle Scholar
  32. Yamaguchi, H., Honeyman, T. W., and Fay, F. S., 1988, β-Adrenergic actions on membrane electrical properties of dissociated smooth muscle cells, Am. J. Physiol, 254:C423.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Edwin D. W. Moore
    • 1
  • Peter L. Becker
    • 1
  • Takeo Itoh
    • 1
  • Fredric S. Fay
    • 1
  1. 1.Program Molecular MedicineUniversity of Massachusetts Medical CenterWorcesterUSA

Personalised recommendations