Strategies for Type-Specific Glycoconjugate Vaccines of Streptococcus pneumoniae

  • Beth Arndt
  • Massimo Porro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 303)


Prevention of bacterial infections in infants by Grampositive and Gram-negative encapsulated microrganisms is still a world-wide concern. According to reliable estimates (US National Institute of Allergy and Infectious Diseases, 1986) the infant mortality by Streptococcus pneumoniae approaches to seven million cases annually and the mortality by encapsulated bacteria (Streptococcus pneumoniae, Haemophilus influenzae type B and Neisseria meningitidis) accounts for about 38% of the total burden by infectious diseases.


Streptococcus Pneumoniae Pneumococcal Vaccine Capsular Polysaccharide Diphtheria Toxin Polysaccharide Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.W., Pichichero, M.E., Insel, R.A., Betts, R., Eby, R., and Smith, D.H., 1986, Vaccines consisting of periodate-cleaved oligosaccharides from the capsule of Haemophilus influenzae type b coupled to a protein: structural and temporal requirements for priming in the human infants, J. Immunol. 137:1181.PubMedGoogle Scholar
  2. Ashwell, G.,1957, Determination of Hexosamines, in “Methods in Enzymology”, 3:95, S.P. Colowick and N.O. Kaplan, Eds., Academic Press, New York.Google Scholar
  3. Atassi, M.Z., 1975, Antigen structure of myoglobin, the complete immunochemical anatomy of a protein and conclusion relating to antigenic structures of proteins. Immunochemistry, 12:423.PubMedCrossRefGoogle Scholar
  4. Austrian, R., 1979, Pneumococcal vaccine: development and prospects, Am.J.Med. 67:547.PubMedCrossRefGoogle Scholar
  5. Avery, O.T., and Goebel, W.F., 1929, Chemoimmunological studies on conjugated carbohydrate proteins. II. Immunological specificity of synthetic sugar-protein antigens, J.Exp. Med. 50:533.PubMedCrossRefGoogle Scholar
  6. Baker P.J., 1990, Regulation of magnitude of antibody response to bacterial Polysaccharide antigens by thymus-derived limphocytes, Infect. Immun., 58:3465.PubMedGoogle Scholar
  7. Berzofsky, J.A., and Schechter, A.N.,1981, The concepts of cross reactivity and specificity in immunology, Molec.Immunol.,18:751.CrossRefGoogle Scholar
  8. Braley-Mullen, H.,1986a, Requirements for activation of contrasuppressor T-cells by type III pneumococcal polysaccharide, J.Immunol., 136:396.Google Scholar
  9. Braley-Mullen, H., 1986b, Characterization and activity of contrasuppressor T-cells induced by type III pneumococcal polysaccharide, J.Immunol., 137:2761.PubMedGoogle Scholar
  10. Chen P.S., Toribara T.Y. and Warner H., 1956, Microdetermination of phosphorus, Analyt.Chem., 28:1756.CrossRefGoogle Scholar
  11. Douglas, R.M., Paton, J.C., Duncan, S.J., and Hausman, D.J.,1983,Antibody response to pneumococcal vaccination in children younger than five years of age. J.Infec.Dis.,148:131.CrossRefGoogle Scholar
  12. Douglas, R.M., and Miles, H.B.,1984, Vaccination against Streptococcus pneumoniae in childhood: lack of demonstrable benefit in young Australian children, J.Infect.Dis. 149:861.PubMedCrossRefGoogle Scholar
  13. Goebel, W.F., 1938, Chemo-immunological studies on conjugated carbohydrate proteins. IV. The immunological properties of an artificial antigen containing cellobiuronic acid, J. Exp. Med., 68:469.PubMedCrossRefGoogle Scholar
  14. Gotschlich, E.C., Goldschneider, I., and Artenstein, M.S.,1969, Human immunity to the meningococcus.IV. Immunogenicity of Group A and Group C meningococcal polysaccharides in human volunteers, J. Exp. Med., 129:1367.PubMedCrossRefGoogle Scholar
  15. Gotschlich, E.C.,1975, Development of polysaccharide vaccine for prevention of meningococcal disease, Allergy, 9:245.Google Scholar
  16. Habeeb, A.F.S.A., 1966, Determination of free amino groups in proteins by trinitrobenzensulfonic acid, Anal. Biochem. 14:328.PubMedCrossRefGoogle Scholar
  17. Kabat, E.A., 1960, The upper limit for the size of the human antidextran combining site, J. Immunol., 84:82.PubMedGoogle Scholar
  18. Kabat, E.A., and Mayer, M.M., 1961, Chemical nature of antigens, in “ Experimental Immunochemistry” p.7–9, E.A. Kabat and M.M. Mayer, Eds., Thomas, Springfield Illinois, USA.Google Scholar
  19. Kabat, E.A., 1966, The nature of an antigenic determinant J. Immunol., 97:1.PubMedGoogle Scholar
  20. Khater, M., Macai, J., Genyea, C., and Kaplan, J., 1986, Natural killer cell regulation of age-related and type-specific variations in antibody responses to pnemococcal polysaccharides, J. Exp. Med., 164:1505.PubMedCrossRefGoogle Scholar
  21. Jennings, H.J., Rosell, K.G., and Carlo, D.J., 1980, Structural determination of the capsular polysaccharide of Streptococcus pneumoniae type-19(19F), Can.J. Chem., 58:1069.CrossRefGoogle Scholar
  22. Lepow, M.L., Barkin, R.M., Berkowitz, CD., et al., 1987, Safety and immunogenicity of Haemophilus influenzae type b polysaccharide-diphtheria toxoid conjugate vaccine in adults, J. Infect. Dis. 150:402.CrossRefGoogle Scholar
  23. Lindberg, B., Lönngren, J., and Powell, D.A., 1977, Structural studies on the specific type 14 pneumococcal polysaccharide., Carbohydr.Res.. 58:177.PubMedCrossRefGoogle Scholar
  24. Makela, P.H., Leinonen, M., Pukander, J., and Karma, P., 1981, A study of the pneumococcal vaccine in prevention of clinical acute attacks of recurrent otitis media, Rev.Infect. Dis., 3:S124.PubMedCrossRefGoogle Scholar
  25. Mazur, A.K., 1984,Most-probable distribution at enzyme depolymerization of polysaccharides, Biopolymers, 23:859.PubMedCrossRefGoogle Scholar
  26. Ohno, N., Yadomae, T., and Miyazaki, T., 1980, The structure of the type-specific polysaccharide of Pneumococcus type XIX. Carbohydr. Res., 80:297.CrossRefGoogle Scholar
  27. Pappenheimer, A.M.,Jr, Uchida, T., and Harper, A.A.,1972 An immunological study of the diphtheria toxin molecule.Immunochemistry, 9:891.PubMedCrossRefGoogle Scholar
  28. Paul, W.E., Katz, D.H., and Benacerraff, B., 1971, Augmented anti-SIII antibody responses to an SIII-protein conjugate, J. Immunol. 107:685.PubMedGoogle Scholar
  29. Porro, M., Saletti, M., Nencioni, L., Tagliaferri, L., and Marsili, I., 1980, Immunogenic correlation between cross-reacting material (CRM197) produced by a mutant of C. diphtheriae and diphtheria toxoid, J.Infect.Dis. 143:716.CrossRefGoogle Scholar
  30. Porro, M., Viti, S., Antoni, G., and Neri, P., 1981, Modifications of the Park-Johnson ferricyanide submicromethod for the assay of reducing groups in carbohydrates, Analyt. Biochem. 118:301.PubMedCrossRefGoogle Scholar
  31. Porro, M., Fabiani, S., Marsili, I., Viti, S., and Saletti, M., 1983, Immunoelectrophoretic characterization of the molecular weight polydispersion of polysaccharides in multivalent bacterial capsular polysaccharide vaccines, J. Biol.Stand., 11:65.PubMedCrossRefGoogle Scholar
  32. Porro, M., Costantino, P., Viti, S., Vannozzi, F., Naggi, A., and Torri, G., 1985, Specific antibodies to diphtheria toxin and type 6A pneumococcal capsular polysaccharide induced by a model of semi-synthetic glycoconjugate antigen, Molec. Immunol., 22:907.CrossRefGoogle Scholar
  33. Porro, M., Costantino, P., Giovannoni, F., Pellegrini, V., Tagliaferri, L., Vannozzi, F., and Viti S., 1986, A molecular model of artificial glycoprotein with predetermined multiple immunodeterminants for Gram-positive and Gram-negative encapsulated bacteria, Molec. Immunol. 23:385.CrossRefGoogle Scholar
  34. Porro, M., 1987, Artificial glycoproteins of predetermined multivalent antigenicity as a new generation of candidate vaccines to prevent infections from encapsulated bacteria: analysis of antigenicity versus immunogenicity, in “Towards better carbohydrate vaccines” pp 279–306, R. Bell and G. Torrigiani, Eds., John Wiley & Sons, New York, USA.Google Scholar
  35. Rebers, P.A., and Heidelberger, M., 1961, The specific polysaccharide of type VI pneumococcus. II. The repeating unit, J. Am. Chem. 83:3056.CrossRefGoogle Scholar
  36. Richards, J.C., and Perry, M.B., 1988, Structure of the specific capsular polysaccharide of Streptococcus pneumoniae type 23F, Can. J. Biochem., Cell Biol., 66:758.CrossRefGoogle Scholar
  37. Rijkers, G.T., and Mosier, D.E., 1985, Pneumococcal polysaccharides induce antibody formation by human B lymphocytes in vitro, J.Immunol. 135:1.PubMedGoogle Scholar
  38. Schlossman, S.F., Yaron, A., Ben-Efraim, S & Sober, H. A., 1965, Immunogenicity of a series of α,N-DNP-L-lysines, Biochemistry, 4:1638.PubMedCrossRefGoogle Scholar
  39. Teele, D.W., Klein, J.O., Greater Boston Collaborative Otitis Media Study Group, 1981, Use of Pneumococcal vaccine for prevention of recurrent acute otitis media in infants in Boston, Rev. Infect. Pis. 3:S113.CrossRefGoogle Scholar
  40. United States National Institute of Allergy and Infectious Diseases, 1986, “New Vaccine Development, Establishing Priorities”, vol. II pg.15, National Academy Press, Washington D.C., USA.Google Scholar
  41. Van Vunakis, H., Kaplan, H., and Levine, L., 1966, Immunogenicity of polylysine and polyornithine when complexed to phosphorylated bovine serum albumin, Immunochemistry, 3:393.PubMedCrossRefGoogle Scholar
  42. Wilson, G.S., and Miles, A., 1975, Diphtheria and other diseases due to corynebacteriae, in “Topley and Wilson’s Principles of Bacteriology, Virology and Immunity”, p.1800–1842, E. Arnold, Ed., Arnold, London.Google Scholar
  43. Zucker, D., and Murphy, J.R., 1984, Monoclonal antibody analysis of diphtheria toxin, I. Localization of epitopes and neutralization of cytotoxicity, Molec.Immunol., 21,785.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Beth Arndt
    • 1
  • Massimo Porro
    • 2
  1. 1.Praxis Biologics Inc.RochesterUSA
  2. 2.Biosynth SrlRapolano TermeSienaItaly

Personalised recommendations