Advertisement

Cancer Imaging and Therapy with Radiolabeled Antibodies

  • David M. Goldenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 303)

Abstract

Functional and constituent markers of neoplasms are being sought to elucidate differences between normal and malignant cells for diagnostic and therapeutic measures, and to provide leads to understanding mechanisms of cancer development, progression, and, ultimately, prevention. Enzymes, hormones, receptors, oncogene products, and other cancer-related molecules, including the extensive family of tumor-associated and oncofetal antigens, have been the focus of study for differentiating tumor from normal tissues and for monitoring the progression of disease (1). Although truly tumor-specific markers have remained elusive, those which are quantitatively increased with neoplasia have been used successfully as diagnostic or monitoring tools (2). In 1973 and 1974, we demonstrated, in a human colonic carcinoma xenograft model, that radioactive goat antibodies against carcinoembryonic antigen (CEA) can target and image CEA-producing tumors (3,4). Thereafter, in 1978, we extended this approach to humans, demonstrating that CEA-producing tumors can be targeted and imaged with 131I-labeled, affinity-purified, goat antibodies against CEA (5). This result indicated that truly cancer-specific substances are not required as targets for antibody localization, and that radiolabeled antibodies can be used to detect and visualize tumors having the appropriate antigens by external scintigraphic methods. We termed this method cancer radioimmunodetection (RAID), and since then several thousand patient studies have been performed with different antibodies, labels, and imaging methods on a diverse group of tumors (6,7). The purpose of this paper is to summarize the status of RAID and to present a perspective on the prospects for cancer therapy with radioimmunoconjugates, or radioimmunotherapy (RAIT).

Keywords

Epidermal Growth Factor Receptor Antibody Fragment Placental Alkaline Phosphatase Epidermal Growth Factor Receptor Antibody Oncofetal Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sell, Cancer Markers of the 1990s, Clinics Lab. Med. 10:1 (1990).Google Scholar
  2. 2.
    R. B. Herberman and D. W. Mercer, eds., “Immunodiagnosis of Cancer,” Marcel Dekker, Inc., New York (1990).Google Scholar
  3. 3.
    F. J. Primus, R. H. Wang, D. M. Goldenberg, et al, Localization of human GW-39 tumors in hamsters by radiolabeled heterospecific antibody to carcinoembryonic antigen, Cancer Res. 33:2977 (1973).PubMedGoogle Scholar
  4. 4.
    D. M. Goldenberg, D. F. Preston, F. J. Primus, et al, Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G, Cancer Res. 34:1 (1974).PubMedGoogle Scholar
  5. 5.
    D. M. Goldenberg, F. DeLand, E. Kim, et al, Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by photoscanning, N. Engl. J. Med. 298:1384 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    D. M. Goldenberg, Current status of cancer imaging with radiolabeled antibodies, J. Cancer Res. Clin. Oncol. 113:203 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    S. M. Larson, Clinical radioimmunodetection, 1978–1988: overview and suggestions for standardization of clinical trials, Cancer Res. 50:892 (1990).Google Scholar
  8. 8.
    D. M. Goldenberg, E. E. Kim, F. H. DeLand, et al, Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen, Cancer Res. 40:2984 (1980).PubMedGoogle Scholar
  9. 9.
    K. R. Hine, A. R. Bradwell, T. A. Reeder, et al., Radioimmunodetection of gastrointestinal neoplasms with antibodies to carcinoembryonic antigen, Cancer Res. 40:2993 (1980).PubMedGoogle Scholar
  10. 10.
    P. A. Farrands, M. V. Pimm, M. J. Embleton, et al., Radioimmunodetection of human colorectal cancers by an anti-tumour monoclonal antibody, Lancet 2:397 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Duran-Reynolds, Studies on the localization of dye and foreign proteins in normal and malignant tissues, Am. J. Cancer 35:98 (1939).Google Scholar
  12. 12.
    G. Carpenter and J. G. Zendegui, Epidermal growth factor, its receptor, and related proteins, Exp. Cell Res. 164:1 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    T. A. Libermann, N. Razon, A. D. Bartel, et al., Expression of epidermal growth factor receptors in human brain tumours, Cancer Res. 44:753 (1984).PubMedGoogle Scholar
  14. 14.
    R. Perez, M. Pascual, A. Macias, et al, Epidermal growth factor receptors in human breast cancer, Breast Cancer Res. Treat. 4:189 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Ozanne, C. S. Richards, F. Hendler, et al., Overexpression of the EGF receptor is a hallmark of squamous cell carcinomas, J. Pathol. 149:9 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Goldenberg, H. Masui, C. Divgi, et al., Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody, J. Natl. Cancer Inst. 81:1616 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    H. P. Kalofonos, T. R. Pawlikowska, A. Hemingway, et al., Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase, J. Nucl. Med. 30:1636 (1989).PubMedGoogle Scholar
  18. 18.
    C. R. Divgi, S. Welt, M. Kris, et al., Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma, J. Natl. Cancer Inst. 83:97 (1991)PubMedCrossRefGoogle Scholar
  19. 19.
    L. W. Brady, A. M. Markoe, and D. V. Woo, Iodine-125-labeled anti-epidermal frowth factor receptor-425 in the treatment of glioblastoma multiforme, in: “The Present and Future Role of Monoclonal Antibodies in the Management of Cancer. Frontiers of Radiatrion Therapy and Oncology,” pp. 151–160, J. M. Vaeth, J. L. Meyer, eds., Karger, Basel (1990).Google Scholar
  20. 20.
    R. D. Blumenthal, R. M. Sharkey, and D. M. Goldenberg, Current perspectives and challenges in the use of monoclonal antibodies for imaging and therapy, in: “Advanced Drug Delivery Reviews,” pp. 279–318, Elsevier Science Publishers B.V., Amsterdam (1990).Google Scholar
  21. 21.
    G. Buraggi, A. Turrin, E. Bombardieri, et al., Immunoscintigraphy of colorectal carcinoma with F(ab’)2 fragments of anti-CEA monoclonal antibody, Cancer Detect. Prevent. 10:335 (1987).PubMedGoogle Scholar
  22. 22.
    R. Schroff, K. Foon, S. Beatty, et al., Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy, Cancer Res. 45:879 (1985).PubMedGoogle Scholar
  23. 23.
    J. A. Carrasquillo, K. A. Krohn, P. Beaumier, et al., Diagnosis of and therapy for solid tumours with radiolabeled antibodies and immune fragments, Cancer Treatment Reports 68:317 (1984).PubMedGoogle Scholar
  24. 24.
    R. M. Sharkey, F. J. Primus, and D. M. Goldenberg, Antibody protein dose and radioimmunodetection of GW-39 human colon tumor xenografts, Int. J. Cancer 39:611 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Z. Patt, L. M. Lamki, T. M. Haynie, et al., Improved tumor localization with increasing dose of indium-111 labeled anticarcinoembryonic antigen monoclonal antibody ZCE 025 in metastatic colorectal cancer, J. Clin. Oncol. 6:1220 (1988).PubMedGoogle Scholar
  26. 26.
    J. D. Beatty, D. M. Hyams, B. A. Morton, et al., Impact of radiolabeled antibody imaging on management of colon cancer, Am. J. Surg. 157:13 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    E. L. Kramer, J. J. Sanger, C. Walsh, et al., Contribution of SPECT to imaging of gastrointestinal adenocarcinoma with 111In-labeled anti-CEA monoclonal antibody, AJR 151:697 (1988).PubMedGoogle Scholar
  28. 28.
    E. L. Kramer, M. E. Noz, J. J. Sanger, et al., CT-SPECT fusion to correlate radiolabeled monoclonal antibody uptake with abdominal CT findings, Radiol. 172:861 (1989).Google Scholar
  29. 29.
    D. M. Goldenberg, H. Goldenberg, R. M. Sharkey, et al, Imaging of colorectal carcinoma with radiolabeled antibodies, Sem. Nucl. Med. 19:262 (1989).CrossRefGoogle Scholar
  30. 30.
    H. J. Hansen, A. L. Jones, R. M. Sharkey, et al, Preclinical evaluation of an “instant” 99mTc-labeling kit for antibody imaging, Cancer Res. 50:794 (1990).Google Scholar
  31. 31.
    D. M. Goldenberg, H. Goldenberg, R. M. Sharkey, et al., Clinical studies of cancer radioimmunodetection with carcinoembryonic antigen monoclonal antibody fragments labeled with 123I or 99mTe, Cancer Res. 50:909 (1990).Google Scholar
  32. 32.
    C. M. Pinsky, D. M. Goldenberg, T. J. Wlodkowski, et al., Detection of occult metastases of colorectal cancer by the use of anti-CEA Fab’ fragments labeled with Tc-99m (abstr.), J. Nucl. Med, (in press).Google Scholar
  33. 33.
    J. W. Greiner, F. Guadagni, P. Horan Hand, et al., Augmentation of tumor antigen expression by recombinant human interferons: enhanced targeting of monoclonal antibodies to carcinomas, in: “Cancer Imaging with Radiolabeled Antibodies,” pp. 413–432, D. M. Goldenberg, ed., Kluwer Publishers, Norwell (1990).CrossRefGoogle Scholar
  34. 34.
    L. M. Cobb and J. L. Humm, Radioimmunotherapy of malignancy using antibody targeted radionuclides, Br. J. Cancer 54:863 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    S. M. Larson, J. A. Carrasaquillo, K. A. Krohn, et al., Localisation of 131I-labelled p97-specific Fab fragments in human melanoma as a basis for radiotherapy, J. Clin. Invest. 72:2102 (1983).Google Scholar
  36. 36.
    S. E. Order, J. L. Klein, and P. K. Leichner, Anti-ferritin IgG antibody for isotopic cancer therapy, Oncology38:154 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    R. H. J. Begent, K. D. Bagshawe, and R. B. Pedley, Use of second antibody in radioimmunotherapy, NCI Monogr. 3:59 (1987).PubMedGoogle Scholar
  38. 38.
    D. M. Goldenberg, R. M. Sharkey, and E. Ford, Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies, J. Nucl. Med. 28:1604 (1987).PubMedGoogle Scholar
  39. 39.
    R. M. Sharkey, J. Mabus, and D. M. Goldenberg, Factors influencing anti-antibody enhancement of tumor targeting with radioantibodies, Cancer Res. 48:2005 (1988).PubMedGoogle Scholar
  40. 40.
    I. D. Bernstein, J. F. Eary, C. C. Badger, et al., High dose radiolabeled antibody therapy of lymphoma, Cancer Res. 50:1017 (1990).Google Scholar
  41. 41.
    R. D. Blumenthal, R. M. Sharkey, L. M. Quinn, et al., Use of hematopoietic growth factors to control myelosuppression caused by radioimmunotherapy, Cancer Res. 50:1003 (1990).Google Scholar
  42. 42.
    S. E. Order, Presidential address: systemic radiotherapy — the new frontier, Int. J. Radiat. Oncol. Biol. Phys. 18:981 (1990).PubMedCrossRefGoogle Scholar
  43. 43.
    B. W. Wessels and R. D. Rogus, Radionuclide selection and model absorbed dose calculations for radiolabeled tumour associated antibodies, Medical Physics 11:638 (1984).PubMedCrossRefGoogle Scholar
  44. 44.
    R. M. Macklis, B. M. Kinsey, A. I. Kassis, et al., Radioimmunotherapy with alpha-particle-emitting immunoconjugates, Science 240:1024 (1988).PubMedCrossRefGoogle Scholar
  45. 45.
    S. E. Order, G. B. Stillwagon, J. L. Klein, et al., 1-131 antiferritin: a new treatment modality in hepatoma: a Radiation Therapy Oncology Group study, J. Clin. Oncol. 3:1573 (1985).PubMedGoogle Scholar
  46. 46.
    N-K. V. Cheung, H. Lazarus, F. D. Miraldi, et al., Ganglioside GD2 specific monoclonal antibody 3F8: a Phase I study in patients with neuroblastoma and malignant melanoma, J. Clin. Oncol. 5:1430 (1987).PubMedGoogle Scholar
  47. 47.
    D. M. Goldenberg, J. A. Horowitz, R. M. Sharkey, et al., Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with Iodine-131-labeled LL2 monoclonal antibody, J. Clin. Oncol. 9:548 (1991).PubMedGoogle Scholar
  48. 48.
    C. C. Badger and I. D. Bernstein, Prospects for monoclonal antibody therapy of leukemia and lymphoma, Cancer 58:584 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    S. Murthy, D. M. Goldenberg, R. E. Lee, et al., Initial targeting studies in lymphoma patients with a new Tc-99m-labeled monoclonal antibody kit (abstr.), J. Nucl. Med. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David M. Goldenberg
    • 1
  1. 1.Garden State Cancer Center and Center for Molecular Medicine and ImmunologyNewarkUSA

Personalised recommendations