Modelling: An Aim and a Tool for the Study of the Chaotic Behaviour of Asteroidal and Cometary Orbits

  • Claude Froeschlé
Part of the NATO ASI Series book series (NSSB, volume 272)


Chaotic solutions of Newton equations are deeply rooted to both asteroidal and cometary dynamics. Great progresses have been made in the last decade using tools and results of the theory of dynamical systems. Both the existence of Kirkwood gaps and the transfer of comets into observable orbits will be related to chaos. Mapping and massive parallel computers are the main tools which will be discussed.


Phase Space Chaotic Motion Body Problem Chaotic Region Disturbing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, V.l. (1976). Methodes Mathématiques de la Mécanique Céleste, Ed. de MoscouGoogle Scholar
  2. Bailie, Ph., and Froeschlé, C. (1989). in Asteroids Comets Meteors III, Eds. Lagerkvist. Rickman, Lindblad, Lindgren, Uppsala Univ., pp. 231–234Google Scholar
  3. Benettin, G., Galgani, L., Giorgilli, A., Strelcy, J.M. (1980) Meccanica p. 9–20, 21–30Google Scholar
  4. Chirikov, B.V. (1979). Phys. Rep, 52, 263–379MathSciNetADSCrossRefGoogle Scholar
  5. Chirikov, B.V., Vecheslavov, V.V. (1986). PreprintGoogle Scholar
  6. Ducan, M., Quinn, T., Temaine, S. (1989). PreprintGoogle Scholar
  7. Dvorak, R., Kribbel, J. (1989). PreprintGoogle Scholar
  8. Froeschlé, C. (1970a). Astron. Astrophys. 4, p. 115ADSGoogle Scholar
  9. Froeschlé, C. (1970b). it Astron. Astrophys. 9, 15ADSMATHGoogle Scholar
  10. Froeschlé, C. (1972). Astron Astrophys. 16, 172ADSMATHGoogle Scholar
  11. Froeschlé, C., Scholl, H. (1977). Aatron, Astrophys. 57, 33–39ADSGoogle Scholar
  12. Froesché, C., Scholl, H. (1982). Astron. Astrophys. III, 346–356ADSGoogle Scholar
  13. Froeschlé, C., Scholl, H. (1983). in Asteroids Comets Meteors. Eds. C.I. Lagerkvist and H. Rickman pp. 115–125Google Scholar
  14. Froeschlé, C. (1984). Celestial Mech., 34, 95–115MathSciNetADSMATHCrossRefGoogle Scholar
  15. Froeschlé, C., Rickman, H. (1980). Astron. Astrophys. 82, 183–194ADSGoogle Scholar
  16. Froeschlé, C., and Rickman, H. (1988). Celestial Mech. 43, 265–284ADSMATHCrossRefGoogle Scholar
  17. Froeschlé, C., and Gonczi, R. (1988). Celestial Mech. 43, 325–330ADSCrossRefGoogle Scholar
  18. Froeschlé, C., and Greenberg, R. (1989). to appear in Asteroid II Google Scholar
  19. Froeschlé. C., Petit, J.M. Astron. Astrophys. to appearGoogle Scholar
  20. Greenberg, R., and Scholl, H. (1979) in Asteroids. Ed. T. Gehrels, Tucson, Univ. of Arizona Press pp. 310–333Google Scholar
  21. Gonczi, R., and Froeschlé C. (1981) Cel. Mech. 25, 271–280ADSMATHCrossRefGoogle Scholar
  22. Guckenheimer, J., Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer VerlagMATHGoogle Scholar
  23. Hahn, G. and C.I. Lagerkvist (1988). Celest. Mech. 43, 285–302ADSGoogle Scholar
  24. Heisler, J., Tremaine, S. (1986). Icarus 65, 13–26ADSCrossRefGoogle Scholar
  25. Hénon, M., and Heiles C. (1964). Astron. J. 69 73–79ADSCrossRefGoogle Scholar
  26. Hénon, M. (1966a). Bull. Astron. (3) 1, fasc 1, p. 57Google Scholar
  27. Hénon, M. (1981). in Cours des Houches XXXVI North Holland 1981Google Scholar
  28. Hénon, M., and Petit, J.M. (1986). Celestial Mech. 38, 67–100MathSciNetADSMATHCrossRefGoogle Scholar
  29. Henrard, J., Lemaitre, A, (1987). Icarus 69, pp. 266–279ADSCrossRefGoogle Scholar
  30. Lichtenberg, A.J., Lieberman, M.A. (1983). Regular and Stochastic Motion Springer-VerlagMATHGoogle Scholar
  31. Martinet, L. and Magnenat, P. (1981). Astron. Astrophys. 96, 68MathSciNetADSMATHGoogle Scholar
  32. Milani, A., Carpino, M., Hahn, G., and Nobili, A.M. (1989). Icarus 78, 212–269ADSCrossRefGoogle Scholar
  33. Murray, C.D., and Fox, K. (1984). Icarus 59, 221–223ADSCrossRefGoogle Scholar
  34. Murray, C.D. (1986). Icarus 65, 70–82ADSCrossRefGoogle Scholar
  35. Petrosky, T.Y. and Broucke, R. (1988).Celest. Mech,. 42, 53–79MathSciNetADSGoogle Scholar
  36. Remy, F., Mignard, F. (1985). Icarus 63, 1–19ADSCrossRefGoogle Scholar
  37. Rickman, H., Vaghi, S. (1976). Astron. Astrophys. 51, 327–342ADSGoogle Scholar
  38. Sagdeev, R.Z. and Zaslavsky, G.M. (1987). il Nuovo Cimento, Vol 97, BN2Google Scholar
  39. Scholl, H., and Froeschlé, C. (1974). Astron. Astrophys. 33, 455–458ADSGoogle Scholar
  40. Scholl, H., and Froeschlé, C. (1975). Astron. Astrophys. 42, 457–463ADSGoogle Scholar
  41. Schubart, J. (1968). Astron. J. 73, 99–103ADSMATHCrossRefGoogle Scholar
  42. Schubart, J. (1978). in Dynamics of Planets of Satellites and theories of their motion, Szebehely V. ed., pp. 137–143CrossRefGoogle Scholar
  43. Schubart, J. (1979). in Dynamics of the Solar System. Duricombe R.L. ed., pp. 207–215CrossRefGoogle Scholar
  44. Sidlichosky, M., and Melando, B. (1986). Bull Astron, Inst. Czech. 37, 66–80ADSGoogle Scholar
  45. Stagg, C.R. and Bailey, M.E. (1989). To appear in Monthly Notices Google Scholar
  46. Varosi F., Grebogi, C., Yorke J.A. (1987). Phys. Lett A 124, 59MathSciNetADSCrossRefGoogle Scholar
  47. Weissman, P.R. (1982). in Comets (ed. L.L. Wilkening), Univ. Arizona Press, Tucson, pp. 637–658Google Scholar
  48. Wisdom, J. (1982). Astron. J. 87, 577–593MathSciNetADSCrossRefGoogle Scholar
  49. Wisdom, J. (1983). Icarus 56, 51–74ADSCrossRefGoogle Scholar
  50. Wisdon, J. (1985). Icarus 63, 272–289ADSCrossRefGoogle Scholar
  51. Wisdom, J. (1987). Icarus 72, 241–275ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Claude Froeschlé
    • 1
  1. 1.Observatoire de la Côte d’AzurNICE CedexFrance

Personalised recommendations