A Perturbation of the Relativistic Kepler Problem

  • Ana Nunes
  • Josefina Casasayas
  • Jaume Llibre
Part of the NATO ASI Series book series (NSSB, volume 272)


We consider the Kepler Problem with the first order relativistic correction and show that, for a suitable class of perturbations, “almost all” the invariant tori and cylinders of the unperturbed system persist and that the perturbed system has strong evidences of non-integrability.


Circular Orbit Unstable Manifold Homoclinic Orbit Invariant Torus Unperturbed System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Lacomba, J. Llibre, A. Nunes: “Invariant tori and cylinders for a class of perturbed Hamilto- nian systems”, to appear in the Proceedings of “Geometry of Hamiltonian Systems”, Berkeley.Google Scholar
  2. 2.
    Moser, J.: 1973, "Stable and random motion in dynamical systems", Princeton Univ. Press, Princeton.Google Scholar
  3. 3.
    McGehee, R.: 1974, “Triple collision in the collinear three-body problem”, Invent. Math. 27, 191–227.Google Scholar
  4. 4.
    Sanders, J.A.: 1982, “Melnikov”s method and averaging”. Celestial Mechanics 28, 171–181.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ana Nunes
    • 1
  • Josefina Casasayas
    • 2
  • Jaume Llibre
    • 3
  1. 1.Departamento de Física, Faculdade de CienciasUniversidade de LisboaLisboaPortugal
  2. 2.Departament de Matemàtica Aplicada i Anàlisi, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament de Matemàtiques, Facultat de CiènciesUniversitat Autónoma de Barcelona BellaterraBarcelonaSpain

Personalised recommendations