Chaos, Stability and Predictability in Newtonian Dynamics

  • Victor Szebehely
Part of the NATO ASI Series book series (NSSB, volume 272)


The entrance of the subjects of limited predictability and of chaos into the fields of celestial mechanics and gravitational n — body dynamics is treated in this paper. The non-integrability of the gravitational many-body problem (for three or more participatmg masses), when combined with errors in modelling and with the uncertain values of the initial conditions, leads to bundles of trajectories instead of single orbits for a given dynamical problem. The consequences of these realistic considerations are treated and their effects in celestial mechanics are discussed.


Periodic Orbit Chaotic Motion Zero Velocity Chaotic Orbit Jacobian Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arenstorf, R.F., “Existence of Periodic Solutions Passing Near Both Masses of the Restricted Three-Body Problem,” Am. Inst. of Aeronautics and Astronautics Journal, Vol. 1, p. 238, 1963.MATHGoogle Scholar
  2. Broucke, R., “Recherches d’orbites périodiques dans le probleme restreint plan (système Terre-Lune), Univ. Louvain, 1962.Google Scholar
  3. Broucke, R., Private communication, 1990.Google Scholar
  4. Contopoulos, G., “On the Existence of a Third Integral of Motion,” Astron. J., Vol. 68, p. 1, 1963.MathSciNetADSCrossRefGoogle Scholar
  5. Davidson, M.C., “Numerical Examples of Transition Orbits in the Restricted Three-body Problems.” Astronautica Acta, Vol. X., pp. 308–319, 1964.Google Scholar
  6. Egorov, W.A., “Certain Problems of Moon Flight Dynamics,” Usp. Fiz. Nauk, Vol. 63,. p. 73, 1957.Google Scholar
  7. Erdi, B., Private communication, 1990.Google Scholar
  8. Ford, J., “A Picture Book of Stochasticity,” Am. Inst. of Physics, pp. 121–146, 1978.Google Scholar
  9. Gleick, J., “Chaos,” Viking Penguin Inc., New York, 1987.MATHGoogle Scholar
  10. Grassberger, P., “Toward a Quantitative Theory of Self-Generated Complexity,” International Journal of Theoretical Physics, Vol. 25, No. 9, pp. 907–938, 1986.MathSciNetADSMATHCrossRefGoogle Scholar
  11. Hadamard, J., J. Math. Pure and Applied, Vol. 4, pp. 27–73, 1898.Google Scholar
  12. Helleman, R.H.G., (Editor), “Nonlinear Dynamics,” New York Academy of Sciences,, Vol. 357, 1980.Google Scholar
  13. Henon, M., “Numerical Exploration of Hamiltonian Systems,” in Chaotic Behavior of Deterministic Systems” (Editors: G. Iooss, R.H.G. Helleman and R. Stora), North Holland Publ. Co., Amsterdam, pp. 54–170, 1983.Google Scholar
  14. Iooss, G. and D.D. Joseph, “Elementary Stability and Bifurcation Theory,” Springer Publ., New York,) 1980.MATHGoogle Scholar
  15. Ioos, R., R.H.G. Helleman and R. Stora (Editors), “Chaotic Behavior of Deterministic Systems,” North-Holland Publ. Co., Amsterdam, 1983.Google Scholar
  16. Lagrange, J.L., “Miscellanea Taurinensia ou Melanges de Turin.” Vol. II, 1760.Google Scholar
  17. Lyapunov, A.A., “The General Problem of the Stability of Motion,” Commun. Math. Soc. Krakow, Vol. 2, p. 1, 1892.Google Scholar
  18. Lorenz, E., “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences, Vol. 20, pp. 130–141, 1963.ADSCrossRefGoogle Scholar
  19. Maddox, J., “Complicated Measures of Complexity,” Nature, Vol. 344, p. 705, 1990.ADSCrossRefGoogle Scholar
  20. Miller, R.H., “A Horror Story about Integration Methods” to appear in Celestial Mechanics, 1990.Google Scholar
  21. Poincare, H., “Les Methodes Nouvelles de la Mecanique Celeste,” Gauthier — Villars, Paris, Vol. I, 1892; Vol. II, 1893; Vol. III, 1899.MATHGoogle Scholar
  22. Poincare, H., “Science et Methode,” Flammardon, Paris, 1908.Google Scholar
  23. Prigogine, I., “From Being to Becoming,” W.H. Freeman Co., San Francisco, 1980.Google Scholar
  24. Prigogine, I. and I. Stengers, “Order out of Chaos,” Bantam Books, New York, 1984. Original “La nouvelle alliance,” Gallimard, Paris, 1979.Google Scholar
  25. Reynolds, O., Phil. Trans. Roy. Soc. London, Vol. 174, p. 935, 1883.MATHCrossRefGoogle Scholar
  26. Ruelle, D., “Deterministic Chaos,” Proc. Royal Soc. London, Vol. 427, pp. 241–248, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  27. Smith, R., Private communication, 1990.Google Scholar
  28. Stewart, I., “Does God Play Dice?” Penguin Books, London, 1989.Google Scholar
  29. Swinney, H.L., and J.P. Gollub, “The Transition to Turbulence,” Physics Today, Vol. 31, No. 8, pp. 41–49, 1978.CrossRefGoogle Scholar
  30. Szebehely, V., “Theory of Orbits.” Academic Press, New York, 1967.Google Scholar
  31. Szebehely, V., “The Problem of Three Bodies,” Proc. NATO Advanced Study Institute in Dynamical Astronomy, D. Reidel Co. Holland, 1973.Google Scholar
  32. Thompson, J.M.T. and H.B. Stewart, “Non-linear Dynamics and Chaos,” J. Wiley & Sons, Wichester, 1986.Google Scholar
  33. Thünng, B., “Zwei spezieller Mondeinfang Bahnen in der Raumfahrt um Erde und Mond,” Astronautica Acta, Vol. V., pp. 241–250, 1959.Google Scholar
  34. Whittaker, E.T., “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,” Cambridge University Press, 1904.MATHGoogle Scholar
  35. Wisdom, J., “The Origin of the Kirkwood Gaps,” Astronomical Journal, Vol. 87, pp. 577–593, 1982.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Victor Szebehely
    • 1
  1. 1.R.B. Curran Centennial Chair Department of Aerospace EngineeringUniversity of TexasAustinUSA

Personalised recommendations