Application of Spherically Exact Algorithms to Numerical Predictability in Two-Body Problems

  • José M. Ferrándiz
  • M. Teresa Pérez
Part of the NATO ASI Series book series (NSSB, volume 272)


Numerical predictions are strongly dependent on the algorithms used in the integration, even in cases as simple as the two-body problem, perturbed or not. In this contribution we show some numerical experiments comparing the results obtained by applying different codes. Among them we include some with special preservation properties, such as being spherically exact.


Kepler Problem Symplectic Method Adams Method Trajectory Problem Revolution Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bettis D.G.: 1970,Numer, Math, 14, 421–434.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Ferrándiz, J.M.: 1988,Celest. Mech. 41, 343–357.ADSGoogle Scholar
  3. [3]
    Ferrándiz, J.M. and Novo, S.: 1990, in this issue, Cortina.Google Scholar
  4. [4]
    Ferrándiz, J.M. and Pérez, M.T.: 1987,Actas del X C.E.D. F.A., Valencia, Spain.Google Scholar
  5. [5]
    Ferrándiz, J.M. and Pérez, M.T., “A family of multi-step methods to integrate trajectories on spheres” (in progress),Google Scholar
  6. [6]
    Ferrándiz, J.M. and Pérez, M.T.: 1989, Actas de las XIV Jornadas Hispano-Lusas, Tenerife, pp. 1225–29.Google Scholar
  7. [7]
    Ferrándiz, J.M., Sansaturio, M.E. and Pojman, J., Celest, Mech, (submitted).Google Scholar
  8. [8]
    Kinoshita, H., Yoshida, H. and Nakai, H.: 1990, Proceedings of the XXIII Symposium on “Celestial Mechanics”, Japan, pp. 1–6.Google Scholar
  9. [9]
    Lambert, J.D. and McLeod, R.J.Y.: 1979,Numerical Analysis Proceedings (Dundee). Springer Verlag 1980.Google Scholar
  10. [10]
    Moore, P.: 1978,Celest,. Mech. 17, 281–297.ADSMATHCrossRefGoogle Scholar
  11. [11]
    Pérez, M.T.: 1989, Doctoral Dissertation, Univ. Valladolid, Spain.Google Scholar
  12. [12]
    Stiefel, E., and Scheifele, G.: 1980,Linear and Regular Celestial Mechanics. Berlin – Heildelberg – New York, Springer.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • José M. Ferrándiz
    • 1
  • M. Teresa Pérez
    • 1
  1. 1.Departamento de Matemática Aplicada a la Ingeniería E.T.S. de Ingenieros IndustrialesUniversidad de ValladolidValladolidSpain

Personalised recommendations