Advertisement

An Impulsional Method to Estimate the Long-Term Behaviour of a Perturbed System: Application to a Case of Planetary Dynamics

  • Bertrand Chauvineau
Part of the NATO ASI Series book series (NSSB, volume 272)

Abstract

This paper aims to present a method to investigate the long term evolution of a perturbed system. The unperturbed system is supposed to possess an integral of the form:
$${\dot{r}^{2}} + h\left( r \right)$$
and the perturbation to be time-dependant. The results are compared to direct analytical and numerical computations in the case of a perturbed harmonic oscillator. Then, it is shown how this method applies to the lifetime of a binary asteroid perturbed by Jupiter.

Keywords

Solar System Harmonic Oscillator Term Evolution Unperturbed System Precise Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpino M., A. Milani, A. M. Nobili 1987; Long-term numerical integrations and synthetic theories for the motion of the outer planets. Astron. Astrophys. 181, 182–194.ADSMATHGoogle Scholar
  2. Chauvineau B. 1990; Dynamique à long terme des asteroides binaires. Bilan des observations et approche theorique. These de Doctorat. Universite de Nice.Google Scholar
  3. Chauvineau B. and F. Mignard 1990; Dynamics of binary asteroids.I-Hill’s case. Icarus 83, 360–381.ADSCrossRefGoogle Scholar
  4. Chauvineau B. and F. Mignard in press; Dynamics of binary asteroids. II - Jovian perturbations. To appear in Icarus.Google Scholar
  5. Laskar J,. 1985; Accurate methods in general planetary theory. Astron. Astrophys. 144, 133–146.ADSMATHGoogle Scholar
  6. Laskar J. 1986; Secular terms of classical planetary theories using the results of general theory. Astron. Astrophys. 157, 59–70.MathSciNetADSGoogle Scholar
  7. Laskar J. 1988; Secular evolution of the solar system over 10 million years, Astron. Astrophys. 198, 341–362.ADSGoogle Scholar
  8. Laskar J. 1989; Numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237–238.ADSCrossRefGoogle Scholar
  9. Milani A., A. M. Nobili, M. Carpino 1987; Secular variations of the semimajor axes: theory and experiments. Astron. Astrophys. 172, 265–279.ADSMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bertrand Chauvineau
    • 1
  1. 1.Observatoire de la Côte d’AzurGrasseFrance

Personalised recommendations