Orbits Asymptotic to the Outermost KAM in the Restricted Three-Body Problem

  • Masayoshi Sekiguchi
  • Kiyotaka Tanikawa
Part of the NATO ASI Series book series (NSSB, volume 272)


We checked next Conjecture by numerical integration for C = 2.98 and μ = 0.001. We will briefly describe our procedure and will show the numerical results in this paper(Sekiguchi and Tanikawa, 1990).


Satellite Orbit Celestial Mechanics Jacobi Constant Point Sequence Surface Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, V. I.:1963, Russ. Math. Surv. 18, 85.CrossRefGoogle Scholar
  2. Hagihara, Y.:1975, Celestial Mechanics, (Japan Society for the Promotion of Science), Vol.4, Part 1, p.36.ADSGoogle Scholar
  3. Moser, J.:1962, Nachr. Akad. Wiss. Goettingen Math. Phys. Kl, 1.Google Scholar
  4. Sekiguchi, M. and Tanikawa, K.:1989, Proc. Symp. 23 “Celestial Mechanics”, H. Kinoshita and H. Yoshida (eds.), (in Japanese), p.96.Google Scholar
  5. Sekiguchi, M. and Tanikawa, K.:1990, submitted to J. of Math. Phys.Google Scholar
  6. Stiefel, E L. and Scheifele, G.:1971,Linear and Regular Celestial Mechanics, (Springer-Verlag Berlin Heidelberg New York), p.20.MATHGoogle Scholar
  7. Szebehely, V.:1967, Theory of Orbits, (Academic Press, New York), pp. 455, 463.Google Scholar
  8. Tanikawa, K.:1979, ‘Dynamics of the Solar System’, (R. L. Duncombe(ed.), D. Reidel), p.l81.Google Scholar
  9. Tanikawa, K.:1983, Celest. Mech. 29, 367.MathSciNetADSCrossRefMATHGoogle Scholar
  10. Tanikawa, K. and Yamaguchi, Y.:1990, submitted to J. of Math. Analy. Appl.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Masayoshi Sekiguchi
    • 1
  • Kiyotaka Tanikawa
    • 2
  1. 1.Astrometry & Celest. Mech. Div.National Astron. Obs.Mitaka, Tokyo 181Japan
  2. 2.Theor. Astrophys. Div.National Astron. Obs.Mitaka, Tokyo 181Japan

Personalised recommendations