The N-Dipole Problem and the Rings of Saturn

  • C. L. Goudas
Part of the NATO ASI Series book series (NSSB, volume 272)


N-magnetic dipoles each located on a star-member of an n-body star system, are assumed to move with their carrier stars and control the motions of charged grains in their vicinity. The case N=5, in a special configuration, where four dipoles perform rigid rotation about the fifth, while all have magnetic moments parallel to the angular velocity vector, is used as a test case to show that the "spaces of trapping" found to exist in the two and three dipole problems, receive a form similar to the rings of Saturn and that pairs of "spaces of trapping" are separated by gaps similar to the Cassini division- The effect of gravity of a rotating planet within which the five dipoles, of internal "dynamo" origin exist and corrotate are taken into account. In the Appendix a model called N-D (N-Dipole) equivalent to the Z3 model for Saturn is given.


Magnetic Dipole Equatorial Plane Electromagnetic Force Convective Cell Rigid Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuña, M.H et al (1980). Science, 207, 444.ADSCrossRefGoogle Scholar
  2. Acuña, M.H et al (1983).J. Geophys. Res., 88, No. A11, 8771–8778.ADSCrossRefGoogle Scholar
  3. Bridges, F.G, (1984). Nature, 309, 333–335.ADSCrossRefGoogle Scholar
  4. Bullard, E.C. et al, (1954). Phil. Trans. Roy.Soc A., 247, 213–278.MathSciNetADSMATHCrossRefGoogle Scholar
  5. Connerney, J.E.P. et al, (1982). Nature, 298, No. 5869, 44–46.ADSCrossRefGoogle Scholar
  6. Connerney, J.E.P. et al, (1984). J. Geophys. Res., 89, No, A9, 7541–7544.ADSCrossRefGoogle Scholar
  7. Goudas, C.L., (1963). Icarus, 2,1.ADSCrossRefGoogle Scholar
  8. Goudas, C.L. et al, (1967). The Astron. J.. 72, 202–213.ADSCrossRefGoogle Scholar
  9. Goudas, C.L. et al, (1990). Cel. Mech. and Dynam. Astron.. 47, 1–14.ADSMATHCrossRefGoogle Scholar
  10. Goudas, C.L. et. al, (1991). First paper in present Proceedings.Google Scholar
  11. Herzenberg, A., (1958). Phil. Trans. Roy. Soc. A., 250, 534–583.MathSciNetADSGoogle Scholar
  12. Jefferys, W.J. et al, (1966). Astron. J., 71, 568.MathSciNetADSCrossRefGoogle Scholar
  13. Kaula, W.M., (1968). @A Introduction to Planetary Phymics: The Terrestrial Planets@, John Wiley & Sons, N.Y.Google Scholar
  14. Stevenson, D.J., (1982). Science, 208, 746–748.ADSCrossRefGoogle Scholar
  15. Stormer, F.C., (1907). Arch. Sci. Phys. et Natur. Geneve, 24, 350.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • C. L. Goudas
    • 1
  1. 1.University of PatrasGreece

Personalised recommendations