Advertisement

Stability of Satellites in Spin-Orbit Resonances and Capture Probabilities

  • Alessandra Celletti
Part of the NATO ASI Series book series (NSSB, volume 272)

Abstract

The stability of satellites in spin-orbit resonances is investigated in the light of perturbation theory. By means of KAM theory we construct invariant surfaces trapping the periodic orbit associated to the resonance in a finite region of the phase space. In the last part of the work we study the probability of capture in a resonance, providing an explicit application to Mercury.

Keywords

Spin-orbit resonance KAM theory Capture probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold V.I., Proof of a Theorem by A.N, Kolmogorov on the invariance of quasi- periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surveys 18, 9 (1963)ADSCrossRefGoogle Scholar
  2. Celletti A., Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I), J. of Appl. Math, and Phys. (ZAMP) 41, 174 (1990)MathSciNetMATHCrossRefGoogle Scholar
  3. Celletti A., Analysis of resonances in the spin-orbit problem in Celestial Mechanics: Higher order resonances and some numerical experiments (Part II), J. of Appl. Math, and Phys. (ZAMP) 41, 453 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Celletti A., Chierchia L., Construction of analytic KAM surfaces and effective stability bounds, Commun. Math. Phys. 118, 119 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  5. Celletti A., Falcolini C., work in progressGoogle Scholar
  6. [6]
    Danby J.M.A., Fundamentals of Celestial Mechanics Macmillan, New York (1962)Google Scholar
  7. De La Llave R., Rana D., Accurate strategies for KAM bounds and their implementation, preprintGoogle Scholar
  8. [8]
    Goldreich P., Peale S., Spin-orbit coupling in the solar system Astron. J. 71, 425 (1966)ADSCrossRefGoogle Scholar
  9. Greene J.M., A method for determining a stochastic transition J. of Math. Phys. 20, 1183 (1979)ADSCrossRefGoogle Scholar
  10. Henrard J., Spin-orbit resonance and the adiabatic invariant in: "Resonances in the Motion of Planets, Satellites and Asteroids", S. Ferraz-Mello and W. Sessin eds., Sao Paulo, 19 (1985)Google Scholar
  11. Kolmogorov A.N., On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk. SSR 98, 469 (1954)MathSciNetGoogle Scholar
  12. Mather J.N., Nonexistence of invariant circles. Erg. theory and dynam. systems 4, 301 (1984)MathSciNetMATHGoogle Scholar
  13. Moser J., On invariant curves of area-preserving mappings of an annulus Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1, 1 (1962)Google Scholar
  14. [14]
    Wisdom J., Chaotic behaviour in the solar system Proc. R. Soc. Lond. A413, 109 (1987)MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alessandra Celletti
    • 1
  1. 1.Dipt. di Matematica Pura e ApplicataUniversitá dell’AquilaCoppito (L’Aquila)Italy

Personalised recommendations