First Order Theory of Perturbed Circular Motion: An Application to Artificial Satellites

  • E. Bois
  • I. Wytrzyszczak
Part of the NATO ASI Series book series (NSSB, volume 272)


This paper describes briefly the particularities of an analytical theory of perturbed circular motion. The main advantage of the solution, expanded in Fourier series and in nonsingular variables, is the presence of iterative formation laws for its coefficients. The theory is then indeed particularly accurate and suitable whatever are the perturbations, their nature and their number. An application to the case of the geosynchronous satellite and the comparison of the results with a nimierical integration show the degree of accuracy of the first-order solution.


Orbital Motion Celestial Mechanics Circular Motion Solar Radiation Pressure Artificial Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bois, E., 1986, “First-Order Theory of Satellite Attitude Motion - Application to HIPPARCOS”, Celestial Mechanics 39, No. 4, pp. 309–327.ADSCrossRefMATHGoogle Scholar
  2. Bois, E., 1987, “Analytical Theory of the Rotation of an Artificial Satellite”, Proceedings of the NATO Advanced Study Institute on: “Long-Term Dynamical Behaviour of Natural and Artificial N’Body Systems”, held in Cortina d’Ampezzo, Italy, Aug. 87, Edited by Archie E. Roy, NATO ASI Series, Series C: Mathematical-and Physical Sciences - Vol. 246, pp. 149–154.Google Scholar
  3. Bois, E., 1988, “Second-Order Theory of the Rotation of an Artificial Satellite” Celestial Mechanics 42, Nos. 1–4, pp. 141–168.ADSCrossRefGoogle Scholar
  4. Bois, E., 1990, “Analytical Theory of Perturbed Circular Orbital Motion”, Third COGEOS Workshop, Bruxelles, Juin 90.Google Scholar
  5. Bois, E., 1991, “First-Order Theory of Perturbed Circular Motion”, paper in preparation for Celestial Mechanics. Google Scholar
  6. Bois, E. and Kovalevsky, J., 1990, “Analytical Model of the Rotation of an Artificial Satellite”, Journal of Guidance, Control, and Dynamics 13, No. 4, Publication of the American Institute of Aeronautics and Astronautics, pp. 638–643.ADSCrossRefMATHGoogle Scholar
  7. Giacaglia, G.E.O., 1977, “The Equations of Motion of an Artificial Satellite in Nonsingular Variables”, Celestial Mechanics 15, p. 191.ADSCrossRefMATHGoogle Scholar
  8. Kaula, W., 1966,Theory of Satellite Geodesy, Blaisdell, Waltham, Mass..Google Scholar
  9. Kovalevsky, J. and Bois, E., 1986, “Attitude Determination of the HIPPARCOS Satellite”, in K.B. Bhatnagar (ed.). Space Dynamics and Celestial Mechanics, pp. 345–354.CrossRefGoogle Scholar
  10. Nacozy, P.E., Dallas, S.S., 1977, “The Geopotential in Nonsingular Orbital Elements”,Celestial Mechanics 15, p. 453.MathSciNetADSCrossRefMATHGoogle Scholar
  11. Wnuk, E., 1988, “Tesseral Harmonic Perturbations for High Order and Degree Harmonics”, Celestial Mechanics 44, p. 179.MathSciNetADSCrossRefMATHGoogle Scholar
  12. Wytrzyszczak, I., 1986, “Nonsingular Elements in Description of the Motion of Small Eccentricity and Inclination Satellites”, Celestial Mechanics 38, p. 101.ADSCrossRefMATHGoogle Scholar
  13. Wytrzyszczak, I., 1990, “Petite excentricité et petite inclinaison dans les problèmes orbitaux de satellites artificiels de la Terre”, Seconde Table Ronde de Planetologie Dynamique, Vars, Mars 1990, Proceedings to be published.Google Scholar
  14. Wytrzyszczak, I., 1990, “First Order Perturbations in Spherical Coordinates r,ϕ,λ”, Third COGEOS Workshop, Bruxelles, June 1990.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • E. Bois
    • 1
  • I. Wytrzyszczak
    • 2
  1. 1.Observatoire de la Côte d’AzurDépartement CergaGrasseFrance
  2. 2.Astronomical Observatory of A. Mickiewicz UniversityPoznańPoland

Personalised recommendations