Perturbation Theory, Resonance, Librations, Chaos, and Halley’s Comet

  • P. J. Message
Part of the NATO ASI Series book series (NSSB, volume 272)


The lectures given at the Advanced Study Institute began with a brief survey of quasi-ergodicity, wildness, and chaos-type phenomena in celestial mechanics, continued with a very brief outline of the development of solar system perturbation theory (itself very briefly indicated here), showing how resonance in orbital period leads to transitions between types of motion, so that, since rational values of the ratio of two orbital periods are everywhere dense, the motions in the solar system will show a complexity in which the eventual character of a particular orbit of the system may be expected to depend very finely on the initial conditions. The lectures ended with a description of some numerical investigations of resonant librations in the orbit of Halley’s comet.


Orbital Period Secular Variation Planetary System Planetary Orbit Regular Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angstrom, A.J., 1862, Actes de la Soc. Roy. de Sci. D’Uppsala, Ser.III, t.IV, pp. 1–10.Google Scholar
  2. Carpino, M., Milani, A., and Nobili, A.M., 1987, Astron. & Astrophys., vol.181, pp. 182–194.ADSMATHGoogle Scholar
  3. Chirikov, B.V., and Vecheslavov, V.V., 1989, Astron. & Astrophys., vol. 221, pp. 146–154.ADSGoogle Scholar
  4. Cohen, C.J., Hubbard, E.C., and Oesterwinter, C., 1972, Astronomical Papers for the American Ephemeris, vol.22. Part 1.Google Scholar
  5. Cohen, C.J., Hubbard, E.C., and Oesterwinter, C., 1973, Celest. Mech., vol.7, pp.438–448.ADSCrossRefGoogle Scholar
  6. Duriez, L., 1978, Astron. & Astrophys., vol.68, pp. 199–216.MathSciNetADSMATHGoogle Scholar
  7. Dvorak, R., and Kribbel, J., 1990, Astron. & Astrophys., vol.227, pp. 264–270.ADSGoogle Scholar
  8. Hénon, M, and Heiles, C., 1964, Astron. J., vol.69, pp.73–79.ADSCrossRefGoogle Scholar
  9. Kiang, T., 1973, M.N.R.A.S., vol.163, pp.271–287.ADSGoogle Scholar
  10. Laskar, J., 1984, „Théorie générale planétaire: éléments orbitaux des planétes sur un million d’années”, Thése de troisiéme cycle, Observatoire de Paris.Google Scholar
  11. Laskar, J., 1985, Astron. & Astrophys., vol.144, pp. 133–146.ADSMATHGoogle Scholar
  12. Laskar, J., 1986, Astron. & Astrophys., vol.157, pp.59–70.MathSciNetADSGoogle Scholar
  13. Laskar, J., 1988, Astron. & Astrophys., vol.198, pp.341–362.ADSGoogle Scholar
  14. Laskar, J., 1989, Nature, vol.338, pp.237–238.ADSCrossRefGoogle Scholar
  15. Message, P.J., 1966, Proc. I.A.U.Symp. 25, pp. 197–222.Google Scholar
  16. Message, P.J., 1982a, Celest. Mech., vol.26, pp.25–39.MathSciNetADSCrossRefGoogle Scholar
  17. Message, P.J., 1982b, in “Applications of Modern Dynamics to Celestial Mechanics and Astrodynamics” (ed. V. Szebehely, Reidel), pp.77–101.Google Scholar
  18. Message, P.J., 1985, in “Stability of the Solar System and its Minor Natural and Artificial Bodies” (ed. V. Szebehely, Reidel), pp.193–199.Google Scholar
  19. Message, P.J., 1988, in “Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems” (ed. A.E. Roy, Kluwer), pp.47–72.Google Scholar
  20. Milani, A., Nobili, A.M., and Carpino, M., 1987, Astron. & Astrophys., vol.172, pp. 265–279.ADSMATHGoogle Scholar
  21. Nacozy, P., 1976, Astron. Journ., vol.81, pp.787–791.ADSCrossRefGoogle Scholar
  22. Richardson, D.L., and Walker, C.F., 1988 Bulletin of Amer. Astron. Soc., vol.20, p.901, and “Astrodynamics 1987” (proc. of AAS/AIAA Astrodynamics Conference at Kalispell, Montana, August 1987), pp. 1473–1495.ADSGoogle Scholar
  23. Roy, A.E., Walker, I.W., Macdonald, A.J., Williams, LP., Fox, K., Murray, C.D., Milani, A., Nobili, A.N., Message, P.J., Sinclair, A.T., and Carpino, M., 1988, Vistas in Astronomy, vol.32, pp.95–116.ADSCrossRefGoogle Scholar
  24. Seidelmann, P.K., Doggett, L.E., and De Luccia, M.R., 1974, Astron. Journ. vol.79, pp.57–60.ADSCrossRefGoogle Scholar
  25. Wisdom, J., 1985, Icarus, vol.63, pp.272–289.ADSCrossRefGoogle Scholar
  26. Yeomans, D., 1977, Astron. Journ., vol.82, pp.435–440.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. J. Message
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of LiverpoolUK

Personalised recommendations