The Wavelet Transform as Clustering Tool for the Determination of Asteroid Families

  • Ph. Bendjoya
  • E. Slezak
  • Cl. Froeschlé
Part of the NATO ASI Series book series (NSSB, volume 272)


The determination of asteroid families is a long standing problem already present within their distribution with respect to their semi major axis. Such an histogram exhibits indeed structures, and, whereas holes resulted in the identification of the so-called Kirkwood gaps, peaks suggested the idea that asteroids might be distributed into families. This latter concept is supported by the break up theory. Within this framework the collision-induced burst of an asteroid leads in fact to what is named a family, that is, the set of fragments whose relative speeds are greater than the speed of ejection (see Housen and Holsapple, 1990 and references therein).


Wavelet Coefficient Semi Major Axis Relative Speed Cluster Tool Proper Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argoul, F., Arnéodo, A., Elezgaray, J., Grasseau, G., Murenzi, R.: 1989, Phys. Letters A 135,327 Wavelet transform of fractal aggregates.ADSCrossRefGoogle Scholar
  2. Bijaoui, A., Slezak, E., Mars, G., Giuducelli, M.: 1989, 12éme colloque dn GRETSI sur le Traitement du signal et des images., 1,209–211 Détection d’objets faibles dans lea images celestes á l’aide de la transformée en ondelettes.Google Scholar
  3. Brouwer, D.: 1951 Astron. J. 56,9ADSCrossRefGoogle Scholar
  4. Daubechies, I.: 1990, I.E.E.E. Trans, on Information Theory The wavelet transform, time frequency localization and signal analysis.Google Scholar
  5. Gabor, D.: 1946, J. I.E.E.E. 93,429–441 Theory of communication.Google Scholar
  6. Goupillaud, P., Grossmann, A., Morlet, J.: 1984, Géoexploration 23,85–102 Cycle-octave and related transforms in seismic signal analysis. CrossRefGoogle Scholar
  7. Froeschlé, CI., Farinella, P., Carpino, M., Froeschlé, Ch., Gonzi, R., Paolicchi, P., Zappalá, V: 1988, inThe Few Body Problem edited by M.J. Valtonen (Kluver, Amsterdam),pp 101–106CrossRefGoogle Scholar
  8. Grossmann, A., Morlet, J.: 1985, in Mathematics+Physics, Lectures on recent results, L. Streit (Ed.), World Scientific Publishing Decomposition of functions into wavelets of constant shape, and related transforms.Google Scholar
  9. Holschneider, M.: 1988, J. Stat. Phys. 50,953–993 On the wavelet transform of fractal objects.ADSCrossRefGoogle Scholar
  10. Housen, K.R, Holsapple, K.A.: 1990, Icarus 84,226–253ADSCrossRefGoogle Scholar
  11. Kronland-Martinet, R., Morlet, J., Grossmann, A.: 1987,Int. J. Pattern Recognition and Artificial Intelligence 1,273–302 Analysis of sound patterns through wavelet transforms. CrossRefGoogle Scholar
  12. Mallat, S.: 1989a, I.E.E.E. Trans, on Pattern Analysis and Machine Intelligence A theory for multiresolution signal decomposition: the wavelet representation.Google Scholar
  13. Mallat, S.: 1989b, I.E.E.E. Trans, on Acoustic Speech and Signal Processing Review of multifrequency channel decompositions of images and wavelet models.Google Scholar
  14. Meyer, Y.: 1989, p. 21–37 in Wavelets, time-frequency methods and phase space, J.M. Combes, A. Grossmann, Ph. Tchamitchian (Eds.), Springer-Verlag Orthonormal wavelets. Google Scholar
  15. Milani, A. and Knezevic, Z.: 1990, Celestial Mechanic submittedGoogle Scholar
  16. Slezak, E., Bijaoui, A., Mars, G.: 1990, Astron. Astrophys. 227,301–316 Identification of structures from galaxy counts: use of the wavelet transform ADSGoogle Scholar
  17. Valsechi, G.B., Knezevic, Z., Williams, J.G.: 1989, in Asteroids II ed. T. Gehrels (Univ. of Arizona,Tucson), pp 1073–1089Google Scholar
  18. Zappalá, V., Farinella, P., Knezevic, Z., Paolicchi, P.: 1984, Icarus 59,261–285ADSCrossRefGoogle Scholar
  19. Zappalá,V.,Cellino,A.,Farinella,P.,Knezevic,Z.: 1990, Astron. J. submitted Asteroid Families. Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ph. Bendjoya
    • 1
  • E. Slezak
    • 1
  • Cl. Froeschlé
    • 1
  1. 1.Observatoire de la Côte d’AzurNice cedexFrance

Personalised recommendations