Advertisement

The Location of Secular Resonances

  • Alessandro Morbidelli
Part of the NATO ASI Series book series (NSSB, volume 272)

Abstract

The importance of the secular resonances for the dynamics in the asteroid belt is well known since Tisserand (1882) and Poincáre (1892). Indeed a Lagrangian linear theory for the secular motion of the planets shows that their elements e w,i,v (eccentricity, longitude of perihelion, inclination and longitude of the ascending node, using the notations of Poincare) are not constants of motion, as they are in the Keplerian problem, but vary with the following law (see Bretagnon (1974)):
$$\begin{array}{*{20}c} {e_k \,\cos \bar \omega _k \, = \mathop \sum \limits_{j = 1,8} M_{k,j} \cos (g_j t + \alpha _j ),} & {e_k \,\sin \bar \omega _k \, = \mathop \sum \limits_{j = 1,8} M_{k,j} \sin (g_j t + \alpha _j )} \\{\sin \frac{{i_k }}{2}\cos v_k = \,\mathop \sum \limits_{j = 1,8} M_{k,j} \cos (s_j t + \beta _j ),\,} & {\sin \frac{{i_k }} {2}\sin v_k = \,\mathop \sum \limits_{j = 1,8} M_{k,j} \sin (s_j t + \beta _j )} \\ \end{array} $$
(1)
Here the indexes j, k refer to each planet, from Mercury (1), to Neptune (8). If one considers only the system formed by the Sun, Jupiter, and Saturn, only the terms with k = 5,6 and j = 5,6 survive.

Keywords

Circular Orbit Keplerian Problem Stable Equilibrium Point Asteroid Belt Motion Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretagnon, P., (1974): "terms á longues périodes dans le système solaire.", Astron. Astrophys., 30, 141–154.ADSMATHGoogle Scholar
  2. Brouwers, D. and Van Woerkom, A. J. J., (1950): "The secular variations of the orbital elements of the principal planets.",Astr. Papers, U.S. Naval Ohs., 13, 85–107.Google Scholar
  3. Carpino, M., Milani, A., Nobili, A.M., (1987): "Long-term numerical integrations and synthetic theories for the motion of the outher planets.", Astr. Aatrophys., 181, 182–194.ADSMATHGoogle Scholar
  4. Froeschlé, Ch., and Scholl, H., (1986a): "The secular resonance v 6 in the asteroidal belt.", Astron. Astrophys., 166, 326–332.ADSGoogle Scholar
  5. Froeschlé, Ch., and Scholl, H., (1986b): "The effects of the secular resonances v 16 and v5 on the asteroidal orbits.", Astron. Astrophys., 170, 138–144.ADSGoogle Scholar
  6. Froeschlé, Ch., and Scholl, H., (1987): "Orbital evolution of asteroids near the secular resonance v6.", Astron. Astrophys., 179, 294–303.ADSGoogle Scholar
  7. Froeschlé, Ch., and Scholl, H., (1988): "Secular resonances: new results.", Celest. Mech., 43, 113–117.ADSGoogle Scholar
  8. Froeschlé, Ch., and Scholl, H., (1989): "The three principal resonances v5,v6 and v16 in the asteroidal belt.", Celest. Mech., 46, 231–251.ADSCrossRefGoogle Scholar
  9. Froeschlé, Ch., and Scholl, H., (1990): "Orbital evolution of known asteroids in the v5 resonance region.",Astron. Astrophys., 227, 255–263.ADSGoogle Scholar
  10. Henrard, J., and Lemaitre, A., (1983): "A second fundamental model for resonance.", Celest. Mech., 30, 197–218.MathSciNetADSMATHCrossRefGoogle Scholar
  11. Henrard, J., (1989): "The adiabatic invariant in celestial mechanics.", submitted to Dynamics reported. Google Scholar
  12. Henrard, J., (1990): " A semi-numerical perturbation method for separable hamiltonian systems.", preprint.Google Scholar
  13. Heppenheimer, T. A., (1980): "Secular resonances and the origin of eccentricities of Mars and the asteroids.", Icarus, 41, 76–88.ADSCrossRefGoogle Scholar
  14. Kozai, Y., (1962): "Secular perturbations of Asteroids with high inclination and eccentricities.". The Astronomical Journal, 67, 591–598.MathSciNetADSCrossRefGoogle Scholar
  15. Laskar, J., (1988): "Secular evolution of the solar system over 10 million years.", Astron. Astrophys., 198, 341–362.ADSGoogle Scholar
  16. Laskar, J., (1990): "The chaotic motion of the solar system.", submitted to Icarus. Google Scholar
  17. Lemaître, A., and Dubru, P., (1990): "The secular resonances in the primitive solar nebula." submitted to Celest. Mech. Google Scholar
  18. Lemaître, A., and Henrard, J., (1990): "Origin of the cahotic behaviour in the 2/1 Kirkwood gap.", Icarus, 83, 391–409ADSCrossRefGoogle Scholar
  19. Milani, A., and Knežević, Z., (1990): "Asteroid proper elements.", submitted to Celest. Mech. Google Scholar
  20. Morbidelli, A., and Henrard, J., (1990a): "Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location." submitted to Celest. Mech. Google Scholar
  21. Morbidelli, A., and Henrard, J., (1990b): "The main secular resonances v 6 ,v 5 and v 16 in the asteroid belt." submitted to Celest. Mech.Google Scholar
  22. Nakai, H., and Kinoshita, H., (1985): "Secular perturbations of asteroids in secular resonances.", Celest. Mech., 36, 391–407.ADSMATHCrossRefGoogle Scholar
  23. Nobili, A.M., Milani, A., and Carpino, M.. (1989): "Pundamental frequencies and small divisors in the orbits of the outer planets.", Astron. Astrophys., 210, 313–336.MathSciNetADSGoogle Scholar
  24. Poincaré, H., (1892): Les meihodes nouvelles de la mecanique celeste, Gauthier-Villars, Paris.Google Scholar
  25. Tisserand, M. P., (1882):Ann. Obs. Paris, 16, El.Google Scholar
  26. Williams, J., D. (1969): "Secular perturbations in the solar system.", Ph.D. dissertation. University of California, Los Angeles.Google Scholar
  27. Williams, J. G., and Paulkner, J., (1981): "The position of secular resonance surfaces.", Icarus, 46, 390–399.ADSCrossRefGoogle Scholar
  28. Yoshikawa, M., (1987): " A simple analytical model for the v 6 resonance.", Celest. Mech., 40, 233–272.ADSCrossRefGoogle Scholar
  29. Yuasa, M., (1973): "Theory of secular perturbations of asteroids including terms of higher order and higher degree.", Pubbl. Astr. Soc. Japan, 25, 399–445.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alessandro Morbidelli
    • 1
  1. 1.Dep. of MathF.U.N.D.PNamurBelgium

Personalised recommendations