Advertisement

Developmental Potential of Murine Pluripotential Stem Cells

  • Allan Bradley
Part of the Basic Life Sciences book series (BLSC, volume 57)

Abstract

The early embryo contains a group of pluripotential inner cell mass (ICM) cells which give rise to cells of the differentiated tissues of the adult, including the germ line1–2. As the ICM cells proliferate, groups of these cells become committed to specific developmental pathways. Pluripotential cells appear to persist in the embryonic portion of the embryo up until 7.5 days3. These undetermined pluripotent stem cells have been established as permanent tissue culture cell lines either directly from the embryo (embryonic stem (ES) cells)4,5 or indirectly from teratocarcinoma tumors (embryonal carcinoma (EC) cells) (See Fig. 1).

Keywords

Embryonal Carcinoma Inner Cell Mass Embryonal Carcinoma Cell Teratocarcinoma Cell Visceral Endoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Gardner and M. F. Lyon, X-chromosome inactivation studied by injection of a single cell into the mouse blastocyst, Nature 231:385–386 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    R. L. Gardner and J. Rossant, Investigation of the fate of 4.5 day postcoitum mouse inner cell mass cells by blastocyst injection, J. Embryol. Exp. Morph. 52:141–152 (1979).PubMedGoogle Scholar
  3. 3.
    I. Damjanov, D. Solter, and N. Skreb, Teratocarcinogenesis as related to the age of embryos grated under the kidney capsule, Wilhelm Roux Arch. 167:288–290 (1971).CrossRefGoogle Scholar
  4. 4.
    M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature 292:154–155 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    G. R. Martin, Isolation of a pluripotential cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 78:7634–7638 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    L. C. Stevens, Testicular ovarian and embryo derived teratomas, Cancer Surveys 2:75–91 (1983).Google Scholar
  7. 7.
    L. C. Stevens and D. S. Varnum, The development of teratomas from parthenogenetically activated mouse eggs, Dev. Biol. 37:369–380 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    J. J. Eppig, L. P. Kozak, E. M. Eicher, and L. C. Stevens, Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division, Nature 269:517–518 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    L. C. Stevens, The development of teratomas from intratesticular grafts of tubal mouse eggs, J. Embryol. Exp. Morph. 20:329–341 (1968).PubMedGoogle Scholar
  10. 10.
    L. C. Stevens, The development of transplantable teratocarcinomas from intratesticular grafts of pre-and post-implantation mouse embryos Dev. Biol. 21:364–382 (1970).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Solter, N. Skreb, and I. Damjanov, Extrauterine growth of mouse eggs results in malignant teratoma, Nature 227:503–504 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    I. Damjanov, D. Solter, M. Belicza, and N. Skreb, Teratomas obtained through the extrauterine growth of seven day old mouse embryos, J. Natl. Cancer Inst. 46:471–482 (1971).PubMedGoogle Scholar
  13. 13.
    D. Solter, I. Damjanov, and H. Koprowski, Embryo derived teratomas, a model system in developmental and tumor biology, in: “The Early Development of Mammals,” M. Balls and A. E. Wild, eds., Cambridge University Press, Cambridge (1975).Google Scholar
  14. 14.
    L. J. Kleinsmith and G. B. Pierce, Multipotency of single embryonal carcinoma cells, Cancer Res. 24:1544–1552 (1964).PubMedGoogle Scholar
  15. 15.
    D. Solter, M. Dominis, and I. Damjanov, Embryo derived teratocarcinoma II: Teratocarcinogenesis depends on the type of embryonic graft, Int. J. Cancer 25:341–349 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Solter and I. Damjanov, Explantation of extra-embryonic parts of 7 day old mouse egg cylinder, Experientia 29:701–705 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Diwan and L. C. Stevens, The development of teratomas from endoderm of mouse egg cylinders, J. Natl. Cancer Inst. 57:937–942 (1976).PubMedGoogle Scholar
  18. 18.
    D. Solter, M. Dominis, and I. Damjanov, Embryo derived teratocarcinoma I: The role of strain and gender in the control of teratocarcinogenesis, Int. J. Cancer 24:770–772 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Solter, M. Dominis, and I. Damjanov, Embryo derived teratocarcinoma III. Development of tumors from teratocarcinoma permissive and non-permissive embryos transplanted to F1 hybrids, Int. J. Cancer 28:479–485 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    I. Damjanov and D. Solter, Maternally transmitted factors modify development and malignancy of teratomas in mice, Nature 296:95–97 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Jami and E. Ritz, Multipotentiality of single cells of transplantable teratocarcinomas derived from mouse embryo grafts, J. Natl. Cancer Inst. 52:1547–1552 (1974).PubMedGoogle Scholar
  22. 22.
    B. Mintz and C. Cromiller, METT-1: a karyotypically normal in vitro line of developmentally totipotent mouse teratocarcinoma cells, Somatic Cell Genetics 7:489–505 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    M. W. McBurney and B. J. Rogers, Isolation of male embryonal carcinoma cell lines and their chromosome replication patterns, Dev. Biol. 89:503–508 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    E. J. Robertson, M. H. Kaufman, A. Bradley, and M. J. Evans, Isolation properties and karyotype analysis of pluripotent (EK) cell lines from normal and parthenogenetic embryos, in: “Cold Spring Harbor Conference on Cell Proliferation,” Vol. 10, L. M. Silver, G. R. Martin, and S. Strickland, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1983).Google Scholar
  25. 25.
    L. M. Silver, G. R. Martin, and S. Strickland, eds., “Cold Spring Harbor Conference on Cell Proliferation,” Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1983).Google Scholar
  26. 26.
    C. F. Graham, Teratocarcinoma stem cells and normal mouse embryogenesis, in: “Concepts in Mammalian Embryogenesis,” M. I. Sherman, ed., MIT Press, Cambridge (1977).Google Scholar
  27. 27.
    G. R. Martin, Teratocarcinomas and mammalian embryogenesis, Science 209:678–776 (1980).CrossRefGoogle Scholar
  28. 28.
    M. Evans, Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture, J. Reprod. Fertil. 62:625–631 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    G. R. Martin and M. J. Evans, Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro, Proc. Natl. Acad. Sci. USA 72:1441–1445 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    B. L. M. Hogan, D. P. Barlow, and R. Tilly, F9 Teratocarcinoma cells as a model for the differentiation of parietal and visceral endoderm in the mouse embryo, Cancer Surveys 2:115–140 (1983).Google Scholar
  31. 31.
    M. J. Evans and G. R. Martin, The differentiation of clonal teratocarcinoma cell cultures in vitro, in: M. I. Sherman and D. Solter, eds., “Teratomas and Differentiation,” Academic Press, New York (1975).Google Scholar
  32. 32.
    D. Solter and B. B. Knowles, Immunosurgery of the mouse blastocyst, Proc. Natl. Acad. Sci. USA 72:5099–5102 (1976).CrossRefGoogle Scholar
  33. 33.
    G. R. Martin, L. M. Wiley, and I. Damjanov, The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells, Dev. Biol. 61:230–244 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Dziadek, Modulation of alphafoetoprotein synthesis in the early post implantation embryo, J. Embryol. Exp. Morph. 46:135–146 (1978).PubMedGoogle Scholar
  35. 35.
    B. L. M. Hogan and R. Tilly, Cell interactions and endoderm differentiation in cultured mouse embryos, J. Embryol. Exp. Morph. 62:379–394 (1981).PubMedGoogle Scholar
  36. 36.
    R. L. Gardner, Investigation of the cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo, J. Embryol. Exp. Morph. 68:175–198 (1982).PubMedGoogle Scholar
  37. 37.
    S. Strickland and V. Mahdavi, The induction of differentiation in teratocarcinoma stem cells with retinoic acid, Cell 15:393–403 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    E. L. Kuff and J. W. Fewell, Induction of neural-like cells and acetyl choline esterase activity in cultures of F9 teratocarcinoma treated with dibutyryl cyclic adenosine mono-phosphate, Develop. Biol. 77:103–115 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Strickland, K. K. Smith, and K. R. Marotti, Hormonal induction and differentiation in teratocarcinoma stem cells: Generation of parietal endoderm by retinoic acid and dibutyryl cAMP, Cell 21:347–355 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    B. L. M. Hogan, D. P. Barlow, and R. Tilly, F9 cells as a model for the differentiation of parietal and visceral endoderm in the mouse embryo, Cancer Surveys 2:115–140 (1983).Google Scholar
  41. 41.
    A. M. Jetten, M. E. R. Jetten, and M. I. Sherman, Stimulation and differentiation by several murine embryonal carcinoma cell lines by retinoic acid, Exp. Cell Res. 124:381–391, (1979).Google Scholar
  42. 42.
    E. M. V. Jones-Yilleneuve, M. W. McBurney, K. A. Rogers, and V. I. Kalnius, Retinoic acid induces embryonal cells to differentiate into neurons and glial cells, J. Cell Biol. 94:253–262 (1982).CrossRefGoogle Scholar
  43. 43.
    E. M. V. Jones-Yilleneuve, M. A. Rudnick, F. Harris, and M. W. McBurney, Retinoic acid-induced neuronal differentiation of embryonal carcinoma cells, Mol. Cell Biol. 3:2271–2279 (1983).Google Scholar
  44. 44.
    M. W. McBurney, E. M. V. Jones-Yilleneuve, M. K. S. Edwards, and P. J. Anderson, Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line, Nature 299:165–167 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    F. Jacob, Mouse teratocarcinomas and embryonic antigens, Immunol. Rev. 33:3–32 (1977).PubMedCrossRefGoogle Scholar
  46. 46.
    P. L. Stern, K. Willison, E. Lennox, G. Galfie, L. Milstein, D. Secker, A. Zeigler, and T. Springer, Monoclonal antibodies as probes for differentiation and tumour associated antigens: A Forssman specificity on teratocarcinoma stem cells, Cell 14:775–783 (1978).PubMedCrossRefGoogle Scholar
  47. 47.
    M. G. Stinnakre, M. J. Evans, K. R. Willison, and P. L. Stern, Expression of Forssman antigen in the post implantation mouse embryo, J. Embryol. Exp. Morph. 61:117–131 (1981).PubMedGoogle Scholar
  48. 48.
    M. J. Dewey, R. Filler, and B. Mintz, Protein patterns of developmentally totipotent mouse teratocarcinoma cells and normal early embryo cells, Develop. Biol. 65:171–182 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    R. H. Lovell-Badge and M. J. Evans, Changes in protein synthesis during differentiation of embryonal carcinoma cells and a comparison with embryo cells, J. Embryol. Exp. Morph. 59:187–206 (1980).PubMedGoogle Scholar
  50. 50.
    C. Failly-Crepin and G. R. Martin, Protein synthesis and differentiation in a clonal line of teratocarcinoma and in pre-implantation mouse embryos, Cell. Diff. 8:61–73 (1979).CrossRefGoogle Scholar
  51. 51.
    M. J. Evans, R. H. Lovell-Badge, P. L. Stern, and M. G. Stinnakre, Cell lineage in the mouse embryo: Forssman antigen distributors and patterns of protein synthesis, in: “Cell Lineage Stem Cells and Cell Determination,” Inserm Symposium 10, N. LeDouarin, ed., Elsevier, North Holland (1979).Google Scholar
  52. 52.
    R. L. Brinster, The effect of cells transferred into the mouse blastocyst on subsequent development, J. Expt. Med. 140:1049–1056 (1974).CrossRefGoogle Scholar
  53. 53.
    B. Mintz and K. Illmensee, Normal genetically mosaic mice produced from malignant teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 72:3585–3589 (1975).PubMedCrossRefGoogle Scholar
  54. 54.
    V. E. Papaioannou, M. W. McBurney, R. L. Gardner, and M. J. Evans, Fate of teratocarcinoma cells injected into early mouse embryos, Nature 258:7073 (1975).CrossRefGoogle Scholar
  55. 55.
    V. E. Papaioannou, R. L. Gardner, M. W. McBurney, C. Babinet, and M. J. Evans, Participation of cultured teratocarcinoma cells in mouse embryogenesis, J. Embryol. Exp. Morph. 44:93–104 (1978).PubMedGoogle Scholar
  56. 56.
    M. J. Dewey, D. W. Martin, Jr., G. R. Martin, and B. Mintz, Mosaic mice with teratocarcinoma derived mutant cells deficient in hypoxanthine phosphoribosyltransferase, Proc. Natl. Acad. Sci. USA 74:5564–5568 (1977).PubMedCrossRefGoogle Scholar
  57. 57.
    T. A. Stewart and B. Mintz, Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 78:6314–6318 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Bradley, M. J. Evans, M. H. Kaufman, and E. J. Robertson, The formation of functional germ line chimaeras from embryo-derived teratocarcinoma cell lines, Nature 309:255–256 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    V. E. Papaioannou and J. Rossant, Effects of embryonic environment on proliferation and differentiation of embryonal carcinoma cells, Cancer Surveys 2:165–183 (1983).Google Scholar
  60. 60.
    C. L. Stewart, Formation of viable chimaeras by aggregation between teratocarcinomas and preimplantation mouse embryos, J. Embryol. Exp. Morph. 67:167–179 (1982).PubMedGoogle Scholar
  61. 61.
    J. Rossant and M. W. McBurney, The developmental potential of an euploid male teratocarcinoma cell line after blastocyst injection, J. Embryol. Exp. Morph. 70:99–112 (1982).PubMedGoogle Scholar
  62. 62.
    M. W. McBurney and B. J. Rogers, Isolation of male embryonal carcinoma cells and their chromosome replication patterns, Develop. Biol. 89:503–508 (1982).PubMedCrossRefGoogle Scholar
  63. 63.
    J. T. Fujii and G. R. Martin, Developmental potential of teratocarcinoma stem cells in utero following aggregation of cleavage stage mouse embryos, J. Embryol. Exp. Morph. 74:79–90 (1983).PubMedGoogle Scholar
  64. 64.
    K. Illmensee and B. Mintz, Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts, Proc. Natl. Acad. Sci. USA 73:549–553 (1976).PubMedCrossRefGoogle Scholar
  65. 65.
    K. Illmensee, Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimaeric mice, in: “Genetic Mosaics and Chimaeras in Mammals,” L. B. Russell, ed., Plenum Press, New York (1978).Google Scholar
  66. 66.
    T. A. Stewart and B. Mintz, Recurrent germline transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo, J. Exp. Zool. 224;465–471 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    B. Mintz and C. Cronmiller, Normal blood cells of anemic genotype in teratocarcinoma derived mosaic mice, Proc. Natl. Acad. Sci. USA 75:6247–6251 (1978).PubMedCrossRefGoogle Scholar
  68. 68.
    B. Mintz and C. Cronmiller, METT-1, a karyotypically normal in vitro line of developmentally totipotent teratocarcinoma cells, Som. Cell Genet. 7:489–505 (1981).CrossRefGoogle Scholar
  69. 69.
    R. L. Gardner and V. E. Papaioannou, Differentiation in the trophectoderm and inner cell mass, in: “The Early Development of Mammals,” M. Balls and A. E. Wild, eds., Cambridge University Press, Cambridge (1975).Google Scholar
  70. 70.
    C. Cronmiller and B. Mintz, Karyotypic normalcy and quasi-normalcy of developmentally totipotent mouse teratocarcinoma cells, Develop. Biol. 67:465–477 (1978).PubMedCrossRefGoogle Scholar
  71. 71.
    A. Bradley and E. J. Robertson, Embryo derived stem cells: A tool for elucidating the developmental genetics of the mouse, Current Topics in Dev. Biol. 20:357–371 (1986).CrossRefGoogle Scholar
  72. 72.
    E. J. Robertson and A. Bradley, Production of permanent cell lines from early embryos and their use in studying developmental problems, in: “Experimental Approaches to Mammalian Embryonic Development,” J. Rossant and R. A. Pederson, eds., Cambridge University Press, Cambridge (1986).Google Scholar
  73. 73.
    J. Rossant and M. W. McBurney, Diploid teratocarcinoma cell lines differ in their ability to differentiate normally after blastocyst injection, in: “Cold Spring Harbor Conf. on Cell Proliferation,” Vol. 10, L. M. Silver, G. R. Martin, and S. Strickland, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1983).Google Scholar
  74. 74.
    E. J. Robertson, A. Bradley, M. Kuehn, and M. J. Evans, Germ Line transmission of genes introduced into cultured pluripotential cells by a retroviral vector, Nature 323:445–448 (1986).PubMedCrossRefGoogle Scholar
  75. 75.
    M. R. Kuehn, A. Bradley, E. J. Robertson, and M. J. Evans, A potential animal model for Lesch-Nyhan Syndrome through introduction of HPRT mutations into mice, Nature 326:295–298 (1987).PubMedCrossRefGoogle Scholar
  76. 76.
    M. L. Hooper, K. Hardy, A. Handyside, S. Hunter, and M. Monk, HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germ line colonization by cultured cells, Nature 326:292–295 (1987).PubMedCrossRefGoogle Scholar
  77. 77.
    S. L. Mansour, K. R. Thomas, and M. R. Capecchi, Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: A general strategy for targeting mutations to non selectable genes, Nature 336:348–352 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Allan Bradley
    • 1
  1. 1.Institute for Molecular GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations