Skip to main content

Malignant Progression of Harvey RAS Transformed Normal Human Bronchial Epithelial Cells

  • Chapter
Boundaries between Promotion and Progression during Carcinogenesis

Part of the book series: Basic Life Sciences ((BLSC,volume 57))

  • 52 Accesses

Abstract

Metastasis is a complex process involving the physiology of cellular interactions with environmental factors such as growth factors and biological modifiers, membrane structures, local and humoral immunological effectors1–9. These interactions ordinarily shape the regulatory functions that coordinate the individual role of cells in the tissue and organ system. However, when metastasis occurs the following aberrant events must occur to cause this biological transition: 1) a genetic change in a cell within a primary tumor3 results in at least the following subsequent changes before metastasis of primary tumor cells to distal sites: a) the cell must be capable of growth to produce a clone capable of metastatic expression, b) the cells in this clone produce enzymes that hydrolyze surrounding structures constituting the basement membrane7–15, c) motility permits the cell to escape its local position and move through anatomical barriers to other locations in the host via the circulatory or lymphatic systems11,13,16, d) cells with the potential to develop tumors at distant locations must escape immune surveillance17,18 and e) finally cells from these metastatic clones establish themselves at distal locations and initiate development of a metastasized tumor that damages tissues and organs not associated with the primary tumor site19–24. Interestingly, these processes often involve the spread of primary tumors in a given location along fairly restricted guidelines of anatomical location for metastatic tumors1,5,8. This observation indicates a specificity of biological control of this process and suggests that the mechanisms regulating metastasis must result from specific changes at the genetic level to permit the development of defined phenotypic expression in these events. Therefore, the specific and consistent pattern of metastatic tumor spread suggests the existence of consistently altered genetic pathways that result in the aberrant physiology required to explain the observation of particular and specific patterns of tumor growth and spread during the metastatic phase of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Paget, The distribution of secondary growth of cancer of the breast, Lancet 1:571–579 (1889).

    Article  Google Scholar 

  2. I. J. Fidler, Selection of successive tumour lines for metastasis, Nature (New Biol) a242:148–149 (1973).

    CAS  Google Scholar 

  3. I. J. Fidler and M. L. Kripke, Metastasis results from pre-existing variant cells within a malignant tumor, Science 197:893–895 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. I. J. Fidler, Tumor heterogeneity and the biology of cancer invasion and metastasis, Cancer Res. 38:2641–2660 (1978).

    Google Scholar 

  5. E. V. Sugarbaker, Patterns of metastasis in human malignancies, Cancer Biol. Rev. 2:235–278 (1981).

    Google Scholar 

  6. I. R. Hart and I. J. Fidler, The implications of tumor heterogeneity for studies on the biology and therapy of cancer metastasis, Biochim. Biophys. Acta 651:37–50 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. L. A. Liotta, U. P. Thorgeirsson, and S. Garbisa, Role of collagenase in tumor cell invasion, Cancer Metastasis Rev. 1:277–288 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. I. R. Hart, “Seed and soil” revisited: Mechanisms of site specific metastasis, Cancer Metastasis Rev. 1:5–16 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. L. Ossowski and E. Reich, Changes in malignant phenotype of human carcinoma conditioned by growth environment, Cell 33:323–333 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. L. A. Liotta, K. Tryggvason, and S. Garbisa, et al., Metastatic potential correlates with enzymic degradation of basement membrane collagen, Nature 284:67–68 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. R. H. Kramer and G. L. Nicolson, Invasion of vascular endothelial cell monolayers and underlying matrix by metastatic human cancer cells, in: “International Cell Biology”, H. G. Schweiger, ed., Springer-Verlag, New York and Heidelberg (1981).

    Google Scholar 

  12. L. A. Liotta, R. H. Goldfarb, and V. P. Terranova, Cleavage of laminin by thrombin and plasmin: α-thrombin selectively cleaves the chain of laminin, Thromb. Res. 21:663–673 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. U. P. Thorgeirsson, L. A. Liotta, and T. Kalebic, et al., Effect of neutral protease inhibitors and a chemoattractant on tumor cell invasion in vitro, J. Nat. Cancer Inst. 69:1049–1054 (1982).

    PubMed  CAS  Google Scholar 

  14. L. A. Liotta, C. N. Rao, and S. H. Barsky, Tumor invasion and the extracellular matrix, Lab. Invest. 49:636–649 (1983).

    PubMed  CAS  Google Scholar 

  15. L. Eisenbach, S. Segal, and M. Feldman, Proteolytic enzymes in tumor metastasis: II. collagenase type IV activity in subcellular fractions of cloned tumor cell populations, J. Nat. Cancer Inst. 74:87–93 (1985).

    PubMed  CAS  Google Scholar 

  16. E. S. Hujanen and V. P. Terranova, Migration of tumor cells to organderived chemoattractants, Cancer Res. 45:3517–3521 (1985).

    PubMed  CAS  Google Scholar 

  17. K. M. Miner, T. Kawaguchi, and G. W. Uba, et al., Clonal drift of cell surface, melanogenic and experimental metastatic properties of in vivo-selected brain meninges-colonizing murine B16 melanoma, Cancer Res. 42:4631–4638 (1982).

    PubMed  CAS  Google Scholar 

  18. G. L. Nicolson and S. E. Custead, Tumor metastasis is not due to adaptation of cells to new organ environment, Science 215:176–178 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. J. C. Murray, L. A. Liotta, and S. Rennard, et al., Adhesion characteristics of murine metastatic and nonmetastatic tumor cells in vitro, Cancer Res. 40:347–351 (1980).

    PubMed  CAS  Google Scholar 

  20. C. N. Rao, I. M. Margulies, and T. S. Tralka, et al., Isolation of subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257:9740–9744 (1982).

    PubMed  CAS  Google Scholar 

  21. J. Mollenhaur, J. A. Bee, and M. A. Kazarbe, et al., Role of anchorin C11, a 31,00-mol-wt membrane protein, in the interactions of chondrocytes with type II collagen, J. Cell. Biol. 98:1572–1578 (1984).

    Article  Google Scholar 

  22. M. Kurkinen, A. Taylor, and J. Garrels, et al., Cell surface-associated proteins which bind native type IV collagen or gelatin, J. Biol. Chem. 259:5915–5922 (1984).

    PubMed  CAS  Google Scholar 

  23. P. H. Hand, A. Thor, and J. Schlom, et al., Expression of laminin receptor in normal and carcinomatous human tissues as defined by a monoclonal antibody, Cancer Res. 45:2713–2719 (1985).

    PubMed  CAS  Google Scholar 

  24. V. P. Terranova, E. S. Hujanen, and D. M. Loeb, et al., A reconstituted basement membrane measures cell invasiveness and selects for highly invasive tumor cells, Proc. Natl. Acad. Sci. USA 83:465–469 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. G. H. Yoakum, J. F. Lechner, E. W. Gabrielson, B. E. Korba, L. Malan-Shibley, J. C. Willey, M. G. Valerio, A. M. Shamsuddin, B. F. Trump, and C. C. Harris, Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene, Science 227:1174–1179 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. G. H. Yoakum, L. Malan-Shibley, W. Benedict, S. Banks-Schleigel, U. P. Thorgeirsson, R. Roeder, M. Schiffman, L. Liotta, and C. C. Harris, Tumorigenic and biochemical properties of human bronchial epithelial cells transformed by Harvey ras oncogene, in preparation.

    Google Scholar 

  27. N. Rave, R. Crkvenjakov, and H. Boedthker, Identification of procollagen mRNAs transferred to diazobenzyl-oxymethyl paper from formaldehyde agarose gels, Nucleic Acids Res. 6:3559–3568 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Yoakum, G.H., Malan-Shibley, L., Harris, C.C. (1991). Malignant Progression of Harvey RAS Transformed Normal Human Bronchial Epithelial Cells. In: Sudilovsky, O., Pitot, H.C., Liotta, L.A. (eds) Boundaries between Promotion and Progression during Carcinogenesis. Basic Life Sciences, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5994-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5994-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5996-8

  • Online ISBN: 978-1-4684-5994-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics