Skip to main content

Genetic Instability Occurs Sooner Than Expected: Promotion, Progression and Clonality During Hepatocarcinogenesis in the Rat

  • Chapter
Boundaries between Promotion and Progression during Carcinogenesis

Abstract

The basic question of “at which point in time does genetic instability occur in the natural history of cancer” can be answered only with another question: in which organ or model? Dr. Shapiro has just given us an impressive account of her work in human malignant gliomas. We also attempted to explore the problem but in a different organ, species and model system. We found that in the rat liver treated with diethylnitrosamine (DEN) and a choline deficient (CD) diet, genomic instability expressed by aneuploidy takes place during the promotion treatment, long before hepatocarcinomas can be diagnosed (1, 2). The presence of aneuploidy implies that irreversible genetic changes, characteristic of progression, occur during dietary promotion (Fig. 1). Since increasing evidence points out that most malignant hepatomas are monoclonal in origin, this fact and the studies previously mentioned have led us to propose now a scheme of cell renewal which explains the overlapping of promotion with progression arising in the clonally replicating foci of preneoplastic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Sudilovsky, and T. K. Hei, Aneuploidy and progression in promoted preneoplastic foci during hepatocarcinogenesis in the rat, Cancer Lett. 56:131–135, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. J. H. Wang, L. I. Hinrichsen, C. M. Whitacre, R. L. Cechner, and O. Sudi-lovsky, Nuclear DNA content of altered hepatic foci in a rat liver carcinogenesis model, Cancer Res. 50:7571–7576, 1990.

    PubMed  CAS  Google Scholar 

  3. C. Peraino, R. J. M. Fry, and E. Staffeldt, Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31:1506–1512, 1971.

    Google Scholar 

  4. E. Scherer, and P. Emmelot, Foci of altered liver cells induced by a single dose of diethylnitrosamine and partial hepatectomy: their contribution to hepatocarcinogenesis in the rat, Eur. J. Cancer 11:145–154, 1975.

    Google Scholar 

  5. D. Solt, and E. Farber, A new principle of the analysis of chemical carcinogenesis, Nature 263:701–703, 1976.

    Article  CAS  Google Scholar 

  6. H. C. Pitot, L. Barsness, T. Goldsworthy, and T. Kitagawa, Biochemical characterization of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature 271:456–458, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. H. Shinozuka, B. Lombardi, S. Sell, and R. M. Iammarino, Enhancement of DL-methionine-induced carcinogenesis in rats fed a choline-devoid diet, J. Natl. Cancer Inst. 61:813–817, 1978.

    PubMed  CAS  Google Scholar 

  8. J. K. Reddy, M. S. Rao, and D. E. Moody, Hepatocellular carcinomas in acatalasemic mice treated with nafenopin, a hypolipidemic peroxisome proliferator, Cancer Res. 36:1211–1217, 1976.

    Google Scholar 

  9. S. Fiala, and A. E. Fiala, Acquisition of an embryonal biochemical feature by rat hepatomas. Experientia 26:889–890, 1970.

    Article  PubMed  CAS  Google Scholar 

  10. M. H. Hanigan, and H. C. Pitot, Gamma-glutamyltranspeptidase-its role in hepatocarcinogenesis, Carcinogenesis 6:165–172, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. T. D. Pugh, and S. Goldfarb, Quantitative histochemical and autoradiograph studies of hepatocarcinogenesis in rats fed 2-acetylaminofluorene followed by phenobarbital, Cancer Res. 38:4450–4457, 1978.

    Google Scholar 

  12. S. Sell, Distribution of α-fetoprotein and albumin-containing cells in the livers of Fischer rats fed four cycles of N-2-fluorenylacetamide, Cancer Res. 38:3107–3113, 1978.

    PubMed  CAS  Google Scholar 

  13. P. Bannasch, Dose-dependence of early cellular changes during liver carcinogenesis, Arch. Toxicol. Suppl 3:111–128, 1980.

    Article  CAS  Google Scholar 

  14. K. Sato, A. Kitahara, K. Satoh, T. Ishikawa, M. Tatematsu, and N. Ito, The placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis, Gann 75:199–202, 1984.

    PubMed  CAS  Google Scholar 

  15. G. M. Williams, The pathogenesis of rat liver cancer caused by chemical carcinogens, Biochem. Biophys. Acta 605:167–189, 1980.

    PubMed  CAS  Google Scholar 

  16. H. C. Pitot, H. C. Glauert, and M. Hanigan, The significance of selected biochemical markers in the characterization of putative initiated cell populations in rodent liver, Cancer Lett. 29:1–14, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. R. G. Cameron, Identification of the putative first cellular step of chemical hepatocarcinogenesis, Cancer Lett. 47:163–167, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. R. G. Cameron, Comparison of GST-P versus GGT as markers of hepatocellular lineage during analysis of initiation of carcinogenesis, Cancer Invest. 6:725–734, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. M. A. Moore, K. Nakagawa, K. Satoh, T. Ishikawa, and K. Sato, Single GST-P positive liver cells—putative initiated hepatocytes, Carcinogenesis 8:483–486, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. K. Yokota, U. Singh, and H. Shinosuka, Effects of a choline-deficient diet and a hypolipidemic agent on single glutathione S-transferase placental form-positive hepatocytes in rat liver, Jpn. J. Cancer Res. 81:129–134, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. G. W. Teebor, and F. F. Becker, Regression and persistance of hyperplastic hepatic nodules induced by N-2-fluorenylacetamide and their relationship to hepatocarcinogenesis, Cancer Res. 31:1–3, 1971.

    PubMed  CAS  Google Scholar 

  22. G. M. Williams, and K. Watanabe, Quantitative kinetics of development of N-2-fluorenylacetamide-induced, altered (hyperplastic) hepatocellular foci resistant to iron accumulation and their reversion or persistance following removal of carcinogen. J Natl. Cancer Inst. 61:113–121, 1978.

    PubMed  CAS  Google Scholar 

  23. K. Enomoto, and E. Farber, Kinetics of phenotypic maturation of remodelling of hyperplastic nodules during liver carcinogenesis, Cancer Res. 42:2330–2335, 1982.

    PubMed  CAS  Google Scholar 

  24. M. A. Moore, H. J. Hacker, and P. Bannasch, Phenotypic instability in foci and nodular lesions induced in a short term system in the rat liver, Carcinogenesis 4:595–603, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. S. Takahashi, B. Lombardi, and H. Shinozuka, Progression of carcinogen-induced foci of γ-glutamyltranspeptidase-positive hepatocytes to hepatomas in rats fed a choline-deficient diet, Int. J. Cancer 29:445–450, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. A. Columbano, G. M. Ledda-Columbano, P. M. Rao, S. Rajalakshmi, and D. S. R. Sarma, Occurrence of cell death (apoptosis) in preneoplastic and neoplastic liver cells. A sequential study. Am. J. Pathol. 116:441–446, 1984.

    PubMed  CAS  Google Scholar 

  27. S. Hendrich, H. P. Glauert, and H. C. Pitot, The phenotypic stability of altered hepatic foci: effects of withdrawal and subsequent readministration of phenobarbital, Carcinogenesis 7:2041–2045, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. P. C. Nowell, The clonal nature of neoplasia, Cancer Cells 1:29–30, 1989.

    PubMed  CAS  Google Scholar 

  29. H. M. Rabes, Th. Bücher, A. Hartmann, I. Linke, and M. Dunnwald, Clonal growth of carcinogen-induced enzyme-deficient preneoplastic cell populations in mouse liver, Cancer Res. 42:3220–3227, 1982.

    PubMed  CAS  Google Scholar 

  30. W. C. Weinberg, L. Berkwits, and P. M. Iannaccone, The clonal nature of carcinogen-induced altered foci of γ-glutamyl transpeptidase expression in rat liver, Carcinogenesis 8:565–570, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. M. Esumi, T. Aritaka, M. Arii, K. Suzuki, H. Mizuo, T. Mima, and T. Shikata. Clonal origin of human hepatoma determined by integration of hepatitis B virus DNA. Cancer Res. 16:5767–5771, 1986.

    Google Scholar 

  32. S. Howell, K. A. Wareham, and E. D. Williams, Clonal origin of mouse liver cell tumors, Am. J. Pathol. 121:426–432, 1985.

    PubMed  CAS  Google Scholar 

  33. J. J. Yunis, Specific fine chromosomal defects in cancer: an overview. Human Pathol. 12:503–515, 1981.

    Article  CAS  Google Scholar 

  34. N. Böhm, and W. Sandritter, DNA in human tumors: a cytophotometric study, Curr. Top. Pathol. 60:151–219, 1975.

    PubMed  Google Scholar 

  35. W. Sandritter, Quantitative pathology in theory and practice, Pathol. Res. Pract. 171:2–21, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. T. O. Caspersson, Quantitative tumor cytochemistry, Cancer Res. 39:2341–2355, 1979.

    PubMed  CAS  Google Scholar 

  37. V. Digernes, Chemical liver carcinogenesis: monitoring the process by flow cytometric DNA measurements, Environ. Health Perspect. 50:195–200, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. G. Saeter, P. E. Schwarze, J. M. Nesland, N. Juul, E. O. Pettersen, and P. O. Seglen, The polyploidizing growth pattern of normal rat liver is replaced by divisional diploid growth in hepatocellular nodules and hepatocarcinomas. Carcinogenesis 9:939–945, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Y. Koike, Y. Suzuki, A. Nagata, S. Furuta, and T. Nagata, T., Studies on DNA content of hepatocytes in cirrhosis and hepatomas by means of microspectrophotometry and radioautography. Histochem. 73:549–562, 1982.

    Article  CAS  Google Scholar 

  40. T. Ezaki, T. Kanematsu, T. Okamura, T. Sonoda, and K. Sugimachi, DNA analysis of hepatocellular carcinoma and clinicopathologic implications. Cancer 61:106–109, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. H. F. Stich, The DNA content of tumor cells. II. Alterations during the formation of hepatomas in rats, J. Natl. Cancer Inst. 24:1283–1297, 1960.

    PubMed  CAS  Google Scholar 

  42. F. F. Becker, R. A. Fox, K. M. Klein, and S. R. Wolman, Chromosome patterns in rat hepatocytes during N-2-fluorenylacetamide carcinogenesis, J. Natl. Cancer Inst. 46:1261–1269, 1971.

    PubMed  CAS  Google Scholar 

  43. F. F. Becker, K. M. Klein, S. R. Wolman, R. Asofsky, and S. Sell, Characterization of primary hepatocellular carcinomas and initial transplant generations, Cancer Res. 33:3330–3338, 1973.

    PubMed  CAS  Google Scholar 

  44. H. Mori, T. Tanaka, S. Sugie, M. Takahashi, and G. M. Williams, DNA content of liver cell nuclei of N-2-fluorenylacetamide-induced altered foci and neoplasms in rats and human hyperplastic foci, J. Natl. Cancer Inst. 69:1277–1281, 1982.

    PubMed  CAS  Google Scholar 

  45. M. Sarafoff, H. M. Rabes, and P. Dörmer, Correlations between ploidy and initiation probability determined by DNA cytophotometry in individual altered hepatic foci, Carcinogenesis 7:1191–1196, 1986.

    Article  PubMed  CAS  Google Scholar 

  46. L. Hinrichsen, S. Miron, R. Cechner, and O. Sudilovsky. Hepatocarcinogenesis in the rat: nuclear DNA content in hepatocarcinomas, Proc. Am. Assoc. Cancer Res. 31:155, 1990.

    Google Scholar 

  47. H. C. Pitot, and H. A. Campbell, Quantitative studies on multistage carcinogenesis in the rat. In Tumor Promoters: Biological approaches for mechanistics studies and assay system (Progr. Cancer Res. Ther. V. 34), R. Langenbach, E. Elmore, and J. Carl Barrett, eds., Raven Press, New York, 1988, pp 79–95.

    Google Scholar 

  48. C. Farber, and D. S. R. Sarma, Biology of disease. Hepatocarcinogenesis: a dynamic cellular perspective, Lab. Invest. 56:4–22, 1987.

    PubMed  CAS  Google Scholar 

  49. P. C. Nowell, The clonal evolution of tumor cell populations. Science 194:23–28, 1976.

    Article  PubMed  CAS  Google Scholar 

  50. P. E. Schwarze, E. O. Petterson, M. C. Shoaib, and P. O. Seglen, Emergence of a population of small diploid hepatocytes during hepatocarcinogenesis, Carcinogenesis 5:1267–1275, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. O. Sudilovsky and T. K. Hei, Aneuploid nuclear DNA content in some enzyme-altered foci during chemical hepatocarcinognesis, Fed. Proc. 42:7, 1983.

    Google Scholar 

  52. O. Sudilovsky and T. K. Hei, Prestaining of membrane markers to identify specific areas for Feulgen cytospectrophotometric determinations in a single section, Anal. Quant. Cytol. Histol. 9:323–327, 1987.

    PubMed  CAS  Google Scholar 

  53. P. Bannasch, Preneoplastic lesions as end points in carcinogenicity testing. I. Hepatic preneoplasia, Carcinogenesis 7:689–695, 1986.

    Article  PubMed  CAS  Google Scholar 

  54. Y. S. Fu and T. L. Hall, DNA ploidy measurements in tissue sections, Anal. Quant. Cytol. Histol. 7:90–96, 1985.

    PubMed  CAS  Google Scholar 

  55. J. D. Crissman and Y. S. Fu, Intraepithelial neoplasia (CIS) of the larynx. A clinicopathological study of six cases with DNA analysis, Arch. Otorinolaryngol. Head Neck Surg. 111:522–528, 1985.

    Google Scholar 

  56. G. Saeter, P. E. Schwarze, J. M. Nesland, and P. O. Seglen. Diploid nature of hepatocellular tumors developing from transplanted preneoplastic liver cells, Brit. J. Cancer 59:198–205, 1989.

    Article  PubMed  CAS  Google Scholar 

  57. P. E. Schwarze, G. Saeter, D. Armstrong, R. G. Cameron, E. Laconi, D. S. R. Sarma, V. Preat, P. O. Seglen, Diploid growth pattern of hepatocellular tumours induced by various carcinogenic treatments, Carcinogenesis, 12:325–327, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. J. W. Grisham, M.-S. Tsao, L. W. Lee, and G. J. Smith, Clonal analysis of neoplastic transformation in cultured diploid rat liver epithelial cells. In: O. Sudilovsky, L. A. Liotta, and H. C. Pitot (eds.), The Boundaries Between Promotiona nd Progression during Carcinogenesis (this volume: article and discussion), New York, Plenum Press, 1991.

    Google Scholar 

  59. H. Danielson, H. B. Steen, T. Lindmo, and A. Reith, Ploidy distribution in experimental liver carcinogenesis in mice, Carcinogenesis 9:59–63, 1988.

    Article  Google Scholar 

  60. S. Haesen, T. Derijke, A. Deleneer, P. Castelain, H. Alexandre, V. Preat, and M. Kirsch-Yolders, The influence of phenobarbital and butylated hydroxytoluene on the ploidy rate in rat hepatocarcinogenesis, Carcinogenesis 9:1755–1761, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. A. G. Knudson and L. C. Strong, Mutation and cancer: a model for Wilm’s tumor of the kidney, J. Natl. Cancer Inst. 48:313–316, 1972.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Sudilovsky, O. et al. (1991). Genetic Instability Occurs Sooner Than Expected: Promotion, Progression and Clonality During Hepatocarcinogenesis in the Rat. In: Sudilovsky, O., Pitot, H.C., Liotta, L.A. (eds) Boundaries between Promotion and Progression during Carcinogenesis. Basic Life Sciences, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5994-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5994-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5996-8

  • Online ISBN: 978-1-4684-5994-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics