Advertisement

Characterization of the Stage of Progression in Hepatocarcinogenesis in the Rat

  • Henry C. Pitot
Part of the Basic Life Sciences book series (BLSC, volume 57)

Abstract

The concept of neoplastic progression as a stage in the natural history of neoplastic development was first enunciated by Foulds1. He distinguished the stage of initiation as that which established “a persistent region of incipient neoplasia whence tumors of varied kinds emerge at a later time”2. All of the remainder of neoplastic development he termed progression. In a sense, such a concept was quite analogous to that proposed earlier by several authors as the stages of initiation and promotion3. Interestingly, the basis for the development of these two concepts of multistage carcinogenesis were, respectively, experimental mammary adenocarcinoma and epidermal carcinoma in mice. In retrospect, more emphasis was placed on the development of malignant lesions in the concept of progression, whereas early benign and preneoplastic lesions were emphasized as characteristic of the stage of promotion during multistage epidermal carcinogenesis. It is only during the last decade that these two general concepts have been reconciled on the basis of an increased understanding and characterization of the early stages of development, initiation and promotion, with the relegation of the term progression to the final stage of neoplastic development, in which the malignant characteristics and genetic heterogeneity of neoplasms appear4.

Keywords

Karyotypic Change Multistage Carcinogenesis Neoplastic Development Canine Transmissible Veneral Tumor Intermediate Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Foulds, The experimental study of tumor progression: a review, Cancer Res. 14:327–339 (1954).PubMedGoogle Scholar
  2. 2.
    L. Foulds, Multiple etiologic factors in neoplastic development, Cancer Res. 25:1339–1347 (1965).PubMedGoogle Scholar
  3. 3.
    P. Shubik, Progression and promotion, J. Natl. Cancer Inst. 73:1005–1011 (1984).PubMedGoogle Scholar
  4. 4.
    H. C. Pitot, D. Beer, and S. Hendrich, Multistage carcinogenesis: the phenomenon underlying the theories, in: “Theories of Carcinogenesis”, O. Iversen, ed., Hemisphere Press, Washington, D.C. (1988).Google Scholar
  5. 5.
    E. R. Fisher, R. H. Shoemaker, and A. Sabnis, Relationship of hyperplasia to cancer in 3-methylcholanthrene-induced mammary tumorigenesis, Lab. Invest. 33:33–42 (1975).PubMedGoogle Scholar
  6. 6.
    S. J. Bevacqua, C. W. Greeff, and M. J. C. Hendrix, Cytogenetic evidence of gene amplification as a mechanism for tumor cell invasion, Somatic Cell Mol. Genet. 14:83–91 (1988).CrossRefGoogle Scholar
  7. 7.
    G. L. Nicolson, Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression, Cancer Res. 47:1473–1487 (1987).PubMedGoogle Scholar
  8. 8.
    P. Frost, R. S. Kerbel, B. Hunt, S. Man, and S. Pathak, Selection of metastatic variants with identifiable karyotypic changes from a non-metastatic murine tumor after treatment with 2′-deoxy-5-azacytidine or hydroxyurea: implications for the mechanisms of tumor progression, Cancer Res. 47:2690–2695 (1987).PubMedGoogle Scholar
  9. 9.
    S. R. Wolman, Karyotypic progression in human tumors, Cancer Metast. Rev. 2:257–293 (1983).CrossRefGoogle Scholar
  10. 10.
    A. C. Ritchie, The classification, morphology, and behaviour of tumours, in: “General Pathology”, H. W. Florey, ed., W. B. Saunders Co., Philadelphia (1970).Google Scholar
  11. 11.
    P. C. Nowell, Mechanisms of tumor progression, Cancer Res. 46:2203–2207 (1986).PubMedGoogle Scholar
  12. 12.
    A. P. Feinberg and D. S. Coffey, The concept of DNA rearrangement in carcinogenesis and development of tumor cell heterogeneity, in: “Tumor Cell Heterogeneity”, A. H. Owens, D. S. Coffey, and S. B. Baylin, eds., Academic Press, Inc., New York (1982).Google Scholar
  13. 13.
    H. C. Pitot, L. Barsness, T. Goldsworthy, and T. Kitagawa, Biochemical characterization of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature 271:456–458 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Peraino, E. F. Staffeldt, B. A. Carnes, V. A. Ludeman, J. A. Blomquist, and S. D. Vesselinovitch, Characterization of histochemically detectable altered hepatocyte foci and their relationship to hepatic tumorigenesis in rats treated once with diethylnitrosamine or benzo(a) pyrene within one day after birth, Cancer Res. 44:3340–3347 (1984).PubMedGoogle Scholar
  15. 15.
    L. Eriksson, M. Ahluwalia, J. Spiewak, G. Lee, D. S. R. Sarma, M. J. Roomi, and E. Farber, Distinctive biochemical pattern associated with resistance of hepatocytes in hepatocyte nodules during liver carcinogenesis, Environ. Health Persp. 49:171–174 (1983).CrossRefGoogle Scholar
  16. 16.
    C. M. Aldaz, C. J. Conti, A. J. P. Klein-Szanto, and T. J. Slaga, Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy, Proc. Natl. Acad. Sci, U.S.A., 84:2029–2032 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    T. H. Yosida, Karyotype evolution and tumor development, Cancer Genet. Cytogenet. 8:153–179 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    G. B. Pierce and W. C. Speers, Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation, Cancer Res. 48:1996–2004 (1988).PubMedGoogle Scholar
  19. 19.
    P. C. Nowell, Genetic instability in cancer cells: relationship to tumor cell heterogeneity, in: “Tumor Cell Heterogeneity,” A. H. Owens, D. S. Coffey, and S. B. Baylin, eds., Academic Press, Inc., New York (1982).Google Scholar
  20. 20.
    R. Sager, I. K. Gadi, L. Stephens, and C. T. Grabowy, Gene amplification: an example of accelerated evolution in tumorigenic cells, Proc. Natl. Acad. Sci, U.S.A. 82:7015–7019 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Chorazy, Sequence rearrangements and genome instability, J. Cancer Res. Clin. Oncol. 109:159–172 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    D. R. Welch, and S. P. Tomasovic, Implications of tumor progression on clinical oncology, Clin. Exp. Metastasis 3:151–188 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    H. C. Pitot, Oncogenes and human neoplasia, Clin. Lab. Med. 6:167–179 (1986).PubMedGoogle Scholar
  24. 24.
    G. Klein, and E. Klein, Conditioned tumorigenicity of activated oncogenes, Cancer Res. 46:3211–3224 (1986).PubMedGoogle Scholar
  25. 25.
    M. G. Parker, and M. J. Page, Use of gene transfer to study expression of steroid-responsive genes, Mol. Cell. Endocrinol. 34:159–168 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    H. C. Pitot, “Fundamentals of Oncology,” 3rd ed., Marcel Dekker, New York (1986).Google Scholar
  27. 27.
    A. A. Sinha, Hormone sensitivity and autonomy of tumours, in: “Hormonal Management of Endocrine-Related Cancer,” B. A. Stoll, ed., Lloyd-Luke, Ltd., London (1981).Google Scholar
  28. 28.
    H. Cedar, DNA methylation and gene activity, Cell 53:3–4 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    L. E. Babiss, S. G. Zimmer, and P. B. Fisher, Reversibility of progression of the transformed phenotype in Ad5-transformed rat embryo cells, Science 228:1099–1101 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    R. S. Kerbel, P. Frost, R. Liteplo, D. A. Carlow, and B. E. Elliott, Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment, J. Cell. Physiol. Suppl. 3:87–97 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    J. F. O’Connell, A. J. P. Klein-Szanto, D. M. DiGiovanni, J. W. Fries, and T. J. Slaga, Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide, Cancer Res. 46:2863–2865 (1986).PubMedGoogle Scholar
  32. 32.
    V. R. Potter, A new protocol and its rationale for the study of initiation and promotion of carcinogenesis in rat liver, Carcinogenesis 2:1375–1379 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Hennings, R. Shores, M. L. Wenk, E. F. Spangler, R. Tarone, and S. H. Yuspa, Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters, Nature 304:67–69 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Scherer, Neoplastic progression in experimental hepatocarcinogenesis, Biochim. Biophys. Acta 738:219–236 (1984).PubMedGoogle Scholar
  35. 35.
    R. Schulte-Hermann, Tumor promotion in the liver, Arch. Toxicol. 57:147–158 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    E. Farber and D. S. R. Sarma, Hepatocarcinogenesis: a dynamic cellular perspective, Lab. Invest. 56:4–22 (1987).PubMedGoogle Scholar
  37. 37.
    R. K. Boutwell, Some biological aspects of skin carcinogenesis, Progr. Exp. Tumor Res. 4:207–250 (1964).PubMedGoogle Scholar
  38. 38.
    T. L. Goldsworthy, M. H. Hanigan, and H. C. Pitot, Models of hepatocarcinogenesis in the rat-contrasts and comparisons, CRC Crit. Rev. Toxicol. 17:61–89 (1986).CrossRefGoogle Scholar
  39. 39.
    C. B. Wigley, Experimental approaches to the analysis of precancer, Cancer Surv. 2:495–515 (1983).Google Scholar
  40. 40.
    D. Y. Lin, Y.-F. Liaw, C. M. Chu, C. S. Chang-Chien, C. S. Wu, P. C. Chen, and I. S. Sheen, Hepatocellular carcinoma in noncirrhotic patients, Cancer 54:1466–1468 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Kuramoto and T. Oohara, Minute cancers arising de novo in the human large intestine, Cancer 61:829–834 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    G. M. Williams, The pathogenesis of rat liver cancer caused by chemical carcinogens, Biochim. Biophys. Acta 605:167–189 (1980).PubMedGoogle Scholar
  43. 43.
    A. P. Maskens and R.-M. Dujardin-Loits, Experimental adenomas and carcinomas of the large intestine behave as distinct entities: most carcinomas arise de novo in flat mucosa, Cancer 47:81–89 (1981).PubMedCrossRefGoogle Scholar
  44. 44.
    D. W. Day, The adenoma-carcinoma sequence, Scand. J. Gastroenterol. 19(suppl. 104):99–107 (1984).Google Scholar
  45. 45.
    Y. Nakanuma, G. Ohta, H. Sugiura, K. Watanabe, and K. Doishita, Incidental solitary hepatocellular carcinomas smaller than 1 cm in size found at autopsy: a morphologic study, Hepatology 6:631–635 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    W. M. Christopherson, Dysplasia, carcinoma in situ, and microinvasive carcinoma of the uterine cervix, Human Pathol. 8:489–501 (1977).CrossRefGoogle Scholar
  47. 47.
    E. Scherer, Relationship among histochemically distinguishable early lesions in multistep-multistage hepatocarcinogenesis, Arch. Toxicol. Suppl. 10:81–94 (1987).PubMedCrossRefGoogle Scholar
  48. 48.
    P. J. Hermanek and J. Giedl, The adenoma-carcinoma sequence in AMMN-induced colonic tumors of the rat, Pathol. Res. Pract. 178:548–554 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Haber, The skin, in: “Systemic Pathology, Vol. II,” G. P. Wright and W. St. C. Symmers, eds., American Elsevier Publishing Company, New York (1966).Google Scholar
  50. 50.
    B. F. Trump, E. M. McDowell, F. Glavin, L. A. Barrett, P. J. Becci, W. Schürch, H. E. Kaiser, and C. C. Harris, The respiratory epithelium. III. Histogenesis of epidermoid metaplasia and carcinoma in situ in the human, J. Natl. Cancer Inst. 61:563–575 (1978).PubMedGoogle Scholar
  51. 51.
    E. M. McDowell and B. F. Trump, Histogenesis of preneoplastic and neoplastic lesions in tracheobronchial epithelium, Surv. Synth. Pathol. Res. 2:235–279 (1983).Google Scholar
  52. 52.
    P. Correa, Precursors of gastric and esophageal cancer, Cancer 50:2554–2565 (1982).PubMedGoogle Scholar
  53. 53.
    C. A. Rubio, Epithelial lesions antedating oesophageal carcinoma. I. Histologic study in mice, Pathol. Res. Pract. 176:269–275 (1983).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Saito, and T. Shimoda, The histogenesis and early invasion of gastric cancer, Acta Pathol. Jpn. 36(9): 1307–1318 (1986).PubMedGoogle Scholar
  55. 55.
    D. Tsiftsis, J. R. Jass, M. I. Filipe, and C. Wastell, Altered patterns of mucin secretion in precancerous lesions induced in the glandular part of the rat stomach by the carcinogen N-methyl-N′-nitro-N-nitrosoguanidine, Invest. Cell Pathol. 3:399–408 (1980).PubMedGoogle Scholar
  56. 56.
    J. L. Madara, P. Harte, J. Deasy, D. Ross, S. Lahey, and G. Steele, Jr., Evidence for an adenoma-carcinoma sequence in dimethylhydrazine-induced neoplasms of rat intestinal epithelium, Am. J. Pathol. 110:230–235 (1983).PubMedGoogle Scholar
  57. 57.
    D. S. Longnecker, H. Shinozuka, and A. Dekker, Focal acinar cell dysplasia in human pancreas, Cancer Res. 45:534–540 (1980).Google Scholar
  58. 58.
    D. S. Longnecker and T. J. Curphey, Adenocarcinoma of the pancreas in azaserine-treated rats, Cancer 35:2249–2257 (1975).Google Scholar
  59. 59.
    S. Watanabe, K. Okita, T. Harada, T. Kodama, Y. Numa, T. Takemoto, and M. Takahashi, Morphologic studies of the liver cell dysplasia, Cancer 51:2197–2205 (1983).PubMedCrossRefGoogle Scholar
  60. 60.
    D. M. Knowles and M. Wolff, Focal nodular hyperplasia of the liver, Human Pathol. 7:533–545 (1976).CrossRefGoogle Scholar
  61. 61.
    R. A. Squire and M. H. Levitt, Report of a workshop on classification of specific hepatocellular lesions in rats, Cancer Res. 35:3214–3223 (1975).PubMedGoogle Scholar
  62. 62.
    W. M. Murphy and M. S. Soloway, Urothelial dysplasia, J. Urology 127:849–854 (1982).Google Scholar
  63. 63.
    E. Kunze, A. Schauer, and S. Schatt, Stages of transformation in the development of N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced transitional cell carcinomas in the urinary bladder of rats, Z. Krebsforsch. 87:139–160 (1976).CrossRefGoogle Scholar
  64. 64.
    R. B. Cohen, Observations on cortical nodules in human adrenal glands. Their relationship to neoplasia, Cancer 19:552–556 (1966).PubMedCrossRefGoogle Scholar
  65. 65.
    T. B. Dunn, Normal and pathologic anatomy of the adrenal gland of the mouse, including neoplasms, J. Natl. Cancer Inst. 44:1323–1389 (1970).PubMedGoogle Scholar
  66. 66.
    L.-J. van Bogaert, Mammary hyperplastic and preneoplastic changes: taxonomy and grading, Breast Cancer Res. Treat. 4:315–322 (1984).PubMedCrossRefGoogle Scholar
  67. 67.
    D. M. Purnell, The relationship of terminal duct hyperplasia to mammary carcinoma in 7,12-dimethylbenz(a)anthracene-treated LEW/Mai rats, Am. J. Pathol. 98:311–322 (1980).PubMedGoogle Scholar
  68. 68.
    H. A. Campbell, Y.-D. Xu, M. H. Hanigan, and H. C. Pitot, Application of quantitative stereology to the evaluation of phenotypically heterogeneous enzyme-altered foci in the rat liver, J. Natl. Cancer Inst. 76:751–767 (1986).PubMedGoogle Scholar
  69. 69.
    S. Albertini, U. Friederich, U. Gröschel-Stewart, F. K. Zimmermann, and F. E. Würgler, Phenobarbital induces aneuploidy in Saccharomyces cerevisiae and stimulates the assembly of porcine brain tubulin, Mutat. Res. 144:67–71 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    P. J. O’Brien, Hydroperoxides and Superoxides in microsomal oxidations, Pharmac. Ther. A. 2:517–536 (1978).Google Scholar
  71. 71.
    M. L. Cunningham, J. G. Peak, and M. J. Peak, Single-strand DNA breaks in rodent and human cells produced by Superoxide anion or its reduction products, Mutat. Res. 184:217–222.Google Scholar
  72. 72.
    T. Boveri, Zur Frage der Entstehung maligner Tumoren, Gustav Fischer, Jena (1914).Google Scholar
  73. 73.
    J. J. Yunis, The chromosomal basis of human neoplasia, Science 221:227–236 (1983).PubMedCrossRefGoogle Scholar
  74. 74.
    J. J. Yunis, C. D. Bloomfield, and K. Ensrud, All patients with acute nonlymphocytic leukemia may have a chromosomal defect, N. Engl. J. Med. 305:135–139 (1981).PubMedCrossRefGoogle Scholar
  75. 75.
    S. R. Wolman, A. A. Horland, and F. F. Becker, Altered karyotypes of transplantable “diploid” tumors, J. Natl. Cancer Inst. 51:1909–1914 (1973).PubMedGoogle Scholar
  76. 76.
    L. Sargent, Y.-H. Xu, G. L. Sattler, L. Meisner, and H. C. Pitot, Ploidy and karyotype of hepatocytes isolated from enzyme-altered foci in two different protocols of multistage hepatocarcinogenesis in the rat, Carcinogenesis, 10:387–391 (1989).PubMedCrossRefGoogle Scholar
  77. 77.
    D. Solt, and E. Farber, New principle for the analysis of chemical carcinogenesis, Nature 263:701–703 (1976).CrossRefGoogle Scholar
  78. 78.
    V. Préat, J. de Gerlache, M. Lans, H. Taper, and M. Roberfroid, Comparative analysis of the effect of phenobarbital, dichlorodiphenyltrichloroethane, butylated hydroxytoluene and nafenopin on rat hepatocarcinogenesis, Carcinogenesis 7:1025–1028 (1986).PubMedCrossRefGoogle Scholar
  79. 79.
    P. C. Nowell and H. P. Morris, Chromosomes of “minimal deviation” hepatomas: a further report on diploid tumors, Cancer Res. 29:969–970 (1969).PubMedGoogle Scholar
  80. 80.
    E. Kovi and H. P. Morris, Chromosome binding studies of several transplantable hepatomas, Adv. Enz. Reg. 14:139–162 (1976).CrossRefGoogle Scholar
  81. 81.
    P. M. Kraemer, L. L. Deaven, H. A. Grissman, and M. A. Van Dilla, DNA constancy despite variability in chromosome number, Adv. Cell Mol. Biol. 2:47–108 (1972).Google Scholar
  82. 82.
    J.-Y. Kato, T. Takeya, C. Grandori, H. Iba, J. B. Levy, and H. Hanafusa, Amino acid substitutions sufficient to convert the nontransforming p60c-src protein to a transforming protein, Mol. Cell. Biol. 6:4155–4160 (1986).PubMedGoogle Scholar
  83. 83.
    J. M. Bishop, The molecular genetics of cancer, Science 235:305–311 (1987).PubMedCrossRefGoogle Scholar
  84. 84.
    C. J. Tabin, S. M. Bradley, C. I. Bargmann, R. A. Weinberg, A. G. Papageorge, E. M. Scolnick, R. Dhar, D. R. Lowy, and E. H. Chang, Mechanism of activation of a human oncogene, Nature 300:143–149 (1982).PubMedCrossRefGoogle Scholar
  85. 85.
    F. Meijlink, T. Curran, A. D. Miller, and I. M. Verma, Removal of a 67-base-pair sequence in the noncoding region of proto-oncogene fos converts it to a transforming gene, Proc. Natl. Acad. Sci., U.S.A. 82:4987–4991 (1985).PubMedCrossRefGoogle Scholar
  86. 86.
    J.-Q. Yang, S. R. Bauer, J. F. Mushinski, and K. B. Marcu, Chromosome translocations clustered 5′ of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation, EMBO J. 4:1441–1447 (1985).PubMedGoogle Scholar
  87. 87.
    W. S. Hayward, B. G. Neel, and S. M. Astrin, Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 290:475–480 (1981).PubMedCrossRefGoogle Scholar
  88. 88.
    N. Katzir, G. Rechavi, J. B. Cohen, T. Unger, F. Simoni, S. Segal, D. Cohen, and D. Givol, “Retroposon” insertion into the cellular oncogene c-myc in canine transmissible veneral tumor, Proc. Natl. Acad. Sci., U.S.A. 82:1054–1058 (1985).PubMedCrossRefGoogle Scholar
  89. 89.
    G. Rechavi, D. Givol, and E. Canaani, Activation of a cellular oncogene by DNA rearrangement: possible involvement of an IS-like element, Nature 300:607–611 (1982).PubMedCrossRefGoogle Scholar
  90. 90.
    A. C. Hayday, S. D. Gillies, H. Saito, C. Wood, K. Wiman, W. S. Hayward, and S. Tonegawa, Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus, Nature 307:334–340 (1984).PubMedCrossRefGoogle Scholar
  91. 91.
    P. D. Fahrlander, J. Sümegi, J.-Q. Yang, F. Wiener, K. B. Marcu, and G. Klein, Activation of the c-myc oncogene by the immunoglobulin heavy-chain gene enhancer after multiple switch region-mediated chromosome rearrangements in a murine plasmacytoma, Proc. Natl. Acad. Sci., U.S.A. 82:3746–3750 (1985).PubMedCrossRefGoogle Scholar
  92. 92.
    C. C. Lin, K. Alitalo, M. Schwab, D. George, H. E. Varmus, and J. M. Bishop, Evolution of karyotypic abnormalities and c-myc oncogene amplification in human colonic carcinoma cell lines, Chromosoma 92:11–15 (1985).PubMedCrossRefGoogle Scholar
  93. 93.
    G. M. Brodeur and R. C. Seeger, Gene amplification in human neuroblastomas: basic mechanisms and clinical implications, Cancer Genet. Cytogenet. 19:101–111 (1986).PubMedCrossRefGoogle Scholar
  94. 94.
    A. P. Feinberg and B. Vogelstein, Hypomethylation of ras oncogenes in primary human cancers, Biochem. Biophys. Res. Commun. 111:47–54 (1983).PubMedCrossRefGoogle Scholar
  95. 95.
    A. Balmain, M. Ramsden, G. T. Bowden, and J. Smith, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature 307:658–660 (1984).PubMedCrossRefGoogle Scholar
  96. 96.
    S. H. Reynolds, S. J. Stowers, R. R. Maronpot, M. W. Anderson, and S. A. Aaronson, Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse, Proc. Natl. Acad. Sci., U.S.A., 83:33–37 (1986).PubMedCrossRefGoogle Scholar
  97. 97.
    J. G. Guillem, L. L. Hsieh, K. M. O’Toole, K. A. Forde, P. LoGerfo, and I. B. Weinstein, Changes in expresion of oncogenes and endogenous retroviral-like sequences during colon carcinogenesis, Cancer Res. 48:3964–3971 (1988).PubMedGoogle Scholar
  98. 98.
    M. D. Erisman, P. G. Rothberg, R. E. Diehl, C. C. Morse, J. M. Spandorfer, and S. M. Astrin, Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene, Mol. Cell. Biol. 5:1969–1976 (1985).PubMedGoogle Scholar
  99. 99.
    T. Tanaka, D. J. Slamon, H. Battifora, and M. J. Cline, Expression of p21 ras oncoproteins in human cancers, Cancer Res. 46:1465–1470 (1986).PubMedGoogle Scholar
  100. 100.
    P. Galand, D. Jacobovitz, and K. Alexandre, Immunohistochemical detection of c-Ha-ras oncogene p21 product in pre-neoplastic and neoplastic lesions during hepatocarcinogenesis in rats, Int. J. Cancer 41:155–161 (1988).PubMedCrossRefGoogle Scholar
  101. 101.
    A. G. Knudson, Jr., Genetics and the etiology of childhood cancer, Pediat. Res. 10:513–517 (1976).PubMedCrossRefGoogle Scholar
  102. 102.
    D. G. Thomassen, T. M. Gilmer, L. A. Annab, and J. C. Barrett, Evidence for multiple steps in neoplastic transformation of normal and preneoplastic Syrian hamster embryo cells following transfection with Harvey murine sarcoma virus oncogene (v-Ha-ras), Cancer Res. 45:726–732 (1985).PubMedGoogle Scholar
  103. 103.
    H. Land, L. F. Parada, and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:596–602 (1983).PubMedCrossRefGoogle Scholar
  104. 104.
    M. F. Hansen and W. K. Cavenee, Genetics of cancer predisposition, Cancer Res. 47:5518–5527 (1987).PubMedGoogle Scholar
  105. 105.
    S. Hendrich, H. A. Campbell, and H. C. Pitot, Quantitative stereological evaluation of four histochemical markers of altered foci in multistage hepatocarcinogenesis in the rat, Carcinogenesis 8:1245–1250 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Henry C. Pitot
    • 1
  1. 1.McArdle Laboratory for Cancer Research, Departments of Oncology and Pathology, The Medical SchoolUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations