Genetic Instability and Tumor Development

  • Peter C. Nowell
Part of the Basic Life Sciences book series (BLSC, volume 57)


This paper will discuss in very general terms, with relatively few data, the issue of genetic instability and what role it may play in the process of tumor progression. It will include both comments on tumor progression in general and on instability from a cytogenetic approach.


Acute Lymphocytic Leukemia Follicular Lymphoma Chronic Myelogenous Leukemia Genetic Instability Ataxia Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Foulds, Tumor progression, Cancer Res. 17:355–356 (1957).PubMedGoogle Scholar
  2. 2.
    J. Cairns, Mutation, selection and the natural history of cancer, Nature 255:197–200 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Nowell, The clonal evolution of tumor cell populations, Science 194:23–28 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Klein, Lymphoma development in mice and humans: diversity of initiation is followed by convergent cytogenetic evolution, Proc. Natl. Acad. Sci. USA 76:2442–2446 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Fialkow, Clonal origin of human tumors, Annu. Rev. Med. 30:135–143 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Arnold, J. Cossman, A. Bakhshi, et al., Immunoglobulin gene rearrangements as unique clonal markers in human lymphoid neoplasms, N. Engl. J. Med. 309:1593–1599 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    P. C. Nowell, C. M. Croce, Chromosomes, genes, and cancer, Am. J. Pathol. 125:8–15 (1986).Google Scholar
  8. 8.
    J. L. Biedler, P. W. Malera, and B. A. Spengler, Chromosome abnormalities and gene amplification: comparison of antifolate-resistant and human neuroblastoma cell systems, in: J. D. Rowley and J. B. Ultmann, eds., “Chromosomes and Cancer: From Molecules to Man”, Academic Press, New York (1983).Google Scholar
  9. 9.
    K. Alitalo and M. Schwab, Oncogene amplification in tumor cells, Adv. Cancer Res. 47:235–259 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Koprowski, M. Herlyn, G. Balaban, et al., Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma, Somatic Cell Molec. Genet. 1:297–302 (1985).CrossRefGoogle Scholar
  11. 11.
    S. H. Friend, T. P. Dryja, and R. A. Weinberg, Oncogenes and tumor-suppressing genes, N. Engl. J. Med. 318:618–622 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    M. F. Hansen and W. K. Cavenee, Tumor suppressors: recessive mutations that lead to cancer, Cell 53:172–173 (1988).CrossRefGoogle Scholar
  13. 13.
    G. Klein and E. Klein, Evolution of tumors and the impact of molecular oncology, Nature 315:190–195 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J. M. Bishop, The molecular genetics of cancer, Science 235:305–311 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    L. E. Babiss, S. G. Zimmer, and P. D. Fisher, Reversibility of progression of the transformed phenotype in Ad5-transformed rat embryo cells, Science 228:1099–1101 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Nicolson, and L. Milas, eds., “Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects,” Raven Press, New York (1984).Google Scholar
  17. 17.
    K. Lapis, L. Liotta, and A. Rabson, eds., “Biochemistry and Molecular Genetics of Cancer Metastasis,” Martinus Nijhoff, The Hague (1986).Google Scholar
  18. 18.
    R. Muschel and L. A. Liotta, Role of oncogenes in metastases, Carcinogenesis 9:705–710 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    G. L. Nicolson, Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncofetal expression, Cancer Res. 47:1473–1487 (1987).PubMedGoogle Scholar
  20. 20.
    J. P. G. Volpe, Genetic instability of cancer: Why a metastatic tumor is unstable and a benign tumor is stable, Cancer Genet. Cytogenet. 34:125–134 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Heim, N. Mandahl, and F. Mitelman, Genetic convergence and divergence in tumor progression, Cancer Res. 48:5911–5916 (1988).PubMedGoogle Scholar
  22. 22.
    J. J. Yunis, The chromosomal basis of human neoplasia, Science 221:227–236 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    J. D. Rowley, Biological implications of consistent chromosome rearrangements in leukemia and lymphoma, Cancer Res. 44:3159–3168 (1984).PubMedGoogle Scholar
  24. 24.
    J. Groffen, J. R. Stephenson, N. Heistercamp, et al., Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell 36:93–99 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Shtivelman, B. Lifshitz, R. P. Gale, et al., Fused transcript of abl and bcr genes in chronic myelogenous leukaemia, Nature 315:550–554 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    S. S. Clark, J. McLaughlin, M. Timmons, et al., Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL), Science 239:775–777 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    J. D. Rowley, Ph-positive leukaemia, including chronic myelogenous leukaemia, Clin. Haematol. 9:55–86 (1980).PubMedGoogle Scholar
  28. 28.
    P. C. Nowell, L. Moreau, P. Growney, et al., Karyotypic stability in chronic B cell leukemia, Cancer Genet. Cytogenet. 33:155–160 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Nowell, J. Finan, D. Glover, et al., Cytogenetic evidence for the clonal nature of Richter’s syndrome, Blood 58:183–186 (1981).PubMedGoogle Scholar
  30. 30.
    P. C. Nowell, L. Jackson, A. Weiss, et al., Ph-positive chronic myelogenous leukemia followed for 27 years, Cancer Genet. Cytogenet. 34:57–61 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    C. M. Croce and P. C. Nowell, Molecular basis of human B cell neoplasia, Blood 65:1–7 (1985).PubMedGoogle Scholar
  32. 32.
    C. E. Gauwerky, J. Hoxie, P. C. Nowell, et al., Pre-B-cell leukemia with a t(8;14) and a t(14;18) translocation is preceded by follicular lymphoma, Oncogene 2:431–435 (1988).PubMedGoogle Scholar
  33. 33.
    D. de Jong, B. M. H. Voetdijk, G. C. Beverstock, et al., Activation of the c-myc oncogene in a precursor-B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma, N. Engl. J. Med. 318:1373–1378 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Leder, J. Battey, G. Lenoir, et al., Translocations among antibody genes in human cancer, Science 222:765–770 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    J. J. Yunis, G. Frizzera, M. M. Oken, et al., Multiple recurrent genomic defects in follicular lymphoma: A possible model for cancer, N. Engl. J. Med. 316:79–84 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Isobe, G. Russo, F. G. Haluska, et al., Cloning of the gene encoding the delta subunit of the human T-cell receptor reveals its physical organization within the alpha-subunit locus and its involvement in chromosome translocations in T-cell malignancy, Proc. Natl. Acad. Sci. USA 85:3933–3937 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    F. Hecht, R. Morgan, B. K.-M. Hecht, et al., Common region on chromosome 14 in T-cell leukemia and lymphoma, Science 226:1445–1446 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    G. Russo, M. Isobe, L. Pegoraro, et al., Molecular analysis of a t(7;14) (q35;q32) chromosome translocation in a T cell leukemia of a patient with ataxia telangiectasia, Cell 53:137–144 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    N. Sadmori, K. Miyuki, K. Nishino, et al., Abnormalities of chromosome 14 at band 14q11 in Japanese patients with chronic T-cell leukemia/ lymphoma, Cancer Genet. Cytogenet. 17:279–282 (1985).CrossRefGoogle Scholar
  40. 40.
    B. Vogelstein, E. R. Fearon, S. R. Hamilton, et al., Genetic alterations during colorectal-tumor development, N. Engl. J. Med. 319:525–532 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    E. Solomon, R. Voss, V. Hall, et al., Chromosome 5 allele loss in human colorectal carcinomas, Nature 328:616–619 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    L. A. Cannon-Albright, M. H. Skolnick, D. T. Bishop, et al., Common inheritance of susceptibility to colonic adenomatous polyps and associated colorectal cancers, N. Engl. J. Med. 319:533–537 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    B. S. Danes, E. J. Gardner, and M. Lipkin, Studies on the identification of genetic risk for heritable colon cancer, Cancer Detect. Prev. 8:349–365 (1985).PubMedGoogle Scholar
  44. 44.
    A. H. Parmiter and P. C. Nowell, The cytogenetics of human malignant melanoma and premalignant lesions, in: L. Nathanson, ed., “Malignant Melanoma: Biology, Diagnosis, and Therapy,” Kluwer Academic Publishers, Boston (1988).Google Scholar
  45. 45.
    J. M. Cowan, R. Halaban, and U. Francke, Cytogenetic analysis of melanocytes from premalignant nevi and melanomas, J. Natl. Cancer Inst. 80:1159–1164 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    N. C. Dracopoli, B. Alhadeff, A. N. Houghton, et al., Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma, Cancer Res. 47:3995–4000 (1987).PubMedGoogle Scholar
  47. 47.
    S. J. Bale, A. Chalravarti, and M. H. Greene, Cutaneous malignant melanoma and familial dysplastic nevi: Evidence for autosomal dominance and pleiotropy, Am. J. Hum. Genet. 38:188–196 (1986).PubMedGoogle Scholar
  48. 48.
    S. H. Bigner, J. Mark, P. C. Burger, et al., Specific chromosomal abnormalities in malignant human gliomas, Cancer Res. 88:405–411 (1988).Google Scholar
  49. 49.
    C. D. James, E. Carlbom, J. P. Dumanski, et al., Clonal genomic alterations in glioma malignancy stages, Cancer Res. 48:5546–5551 (1988).PubMedGoogle Scholar
  50. 50.
    M. J. Birrer and J. D. Minna, Molecular genetic of lung cancer, Semin. Oncol. 15:226–235 (1988).PubMedGoogle Scholar
  51. 51.
    I. U. Ali, R. Lifereau, C. Theillet, et al., Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia, Science 238:185–188 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    M. J. van de Vijver, J. L. Peterse, W. J. Mooi, et al., Neu-protein overexpression in breast cancer: Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer, N. Engl. J. Med. 319:1239–1245 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    E. P. Gelmann and M. E. Lippman, Understanding the role of oncogenes in human breast cancer, in: M. Sluyser, ed., “Growth Factors and Oncogenes in Breast Cancer,” Ellis Horwood Ltd., Chichester (England) (1987).Google Scholar
  54. 54.
    T. Boveri, Zur Frage der Entstehung maligner Tumoren, Gustave Fischer Verlag, Jena (Germany) (1914).Google Scholar
  55. 55.
    D. Von Hansemann, Uber asymmetrische Zellteilung in Epithelkrebsen und der biologische Bedeutung, Virchows Arch. Pathol. Anat. Physiol. 119:298–307 (1890).Google Scholar
  56. 56.
    J. German, ed., “Chromosome Mutation and Neoplasia, Alan R. Liss, New York (1983).Google Scholar
  57. 57.
    R. Sager, Genetic instability, suppression, and human cancer, in: L. Sachs, ed., “Gene Regulation in the Expression of Malignancy,” Oxford University Press, London (1985).Google Scholar
  58. 58.
    V. Ling, A. F. Chambers, J. F. Harris, et al., Quantitative genetic analysis of tumor progression, Cancer Metastasis Rev. 4:173–194 (1985).PubMedCrossRefGoogle Scholar
  59. 59.
    R. Gantt, K. K. Sanford, R. Parshad, et al., Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture, Cancer Res. 47:1390–1397 (1987).PubMedGoogle Scholar
  60. 60.
    J. Cairns, The origin of human cancers, Nature 289:353–357 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    L. Loeb and L. Kunkel, Fidelity of DNA synthesis, Annu. Rev. Biochem. 52:429–457 (1982).CrossRefGoogle Scholar
  62. 62.
    G. Poste, J. Doll, and I. J. Fidler, Interactions between clonal sub-populations affect the stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells, Proc. Natl. Acad. Sci. USA 78:6226–6230 (1981).PubMedCrossRefGoogle Scholar
  63. 63.
    W. C. Lambert and M. W. Lambert, DNA repair deficiency and cancer in xeroderma pigmentosum, Cancer Rev. 7:56–81 (1987).Google Scholar
  64. 64.
    F. Hecht, DNA ligase I, Bloom’s syndrome, and cancer, Cancer Genet. Cytogenet. 30:181–182 (1988).PubMedCrossRefGoogle Scholar
  65. 65.
    J. J. Yunis and A. L. Soreng, Constitutive fragile sites and cancer, Science 226:1199–1204 (1984).PubMedCrossRefGoogle Scholar
  66. 66.
    G. R. Sutherland and R. N. Simmers, No statistical association between common fragile sites and nonrandom chromosomal breakpoints in cancer cells, Cancer Genet. Cytogenet. 31:9–15 (1988).PubMedCrossRefGoogle Scholar
  67. 67.
    M. B. Sporn and G. J. Todaro, Autocrine secretion and malignant transformation of cells, N. Engl. J. Med. 303:878–880 (1980).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Sluyser, ed., “Growth Factors and Oncogenes in Breast Cancer,” Ellis Horwood Ltd., Chichester (England) (1987).Google Scholar
  69. 69.
    E. Farber and C. Cameron, The sequential analysis of cancer development, Adv. Cancer Res. 31:125–225 (1980).PubMedCrossRefGoogle Scholar
  70. 70.
    P. Nowell, Preleukemia: Cytogenetic clues in some confusing disorders, Am. J. Pathol. 89:459–476 (1977).PubMedGoogle Scholar
  71. 71.
    B. N. Ames, R. Magaw, and L. S. Gold, Ranking possible carcinogenic hazards, Science 236:271–280 (1987).PubMedCrossRefGoogle Scholar
  72. 72.
    K. Yamashina, B. E. Miller, and G. H. Heppner, Macrophage-mediated induction of drug-resistant variants in a mouse mammary tumor cell line, Cancer Res. 46:2396–2401 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Peter C. Nowell
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations