Advertisement

Cancer Genes by Non-Homologous Recombination

  • Peter H. Duesberg
  • David Goodrich
  • Ren-Ping Zhou
Part of the Basic Life Sciences book series (BLSC, volume 57)

Abstract

The only proven cancer genes to date are the onc genes of directly transforming retroviruses1–4. These are autonomous transforming genes because they transform diploid cells in culture with single hit kinetics, and because all susceptible cells become transformed as soon as they are infected. Accordingly, tumors induced by such viruses in animals are all polyclonal. Such viruses have never been found in healthy animals, a statement that cannot be made for retroviruses without onc genes or DNA tumor viruses, which are commonly found in animals outside the laboratory and only transform cells indirectly and inefficiently5–7.

Keywords

Long Terminal Repeat Cancer Gene Diploid Cell Rous Sarcoma Virus Cellular Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Duesberg, Activated oncogenes: Sufficient or necessary for cancer?, Science 228:669–677 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    P. H. Duesberg, Cancer genes: Rare recombinants instead of activated oncogenes, Proc. Natl. Acad. Sci., USA 84:2117–2124 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    P. H. Duesberg, Latent cellular oncogenes: The paradox dissolves, J. Cell Sci. Suppl. 7:169–187 (1987).PubMedGoogle Scholar
  4. 4.
    P. H. Duesberg, Cancer genes generated by rare chromosomal arrangements rather than activation of oncogenes, Med. Oncol. and Tumor Pharmacother. 4:163–175 (1987).Google Scholar
  5. 5.
    J. Tooze, “The Molecular Biology of Tumor Viruses,” Cold Spring Harbor Laboratory, Cold Spring Harbor (1973).Google Scholar
  6. 6.
    R. Weiss, N. Teich, H. Varmus, and J. Coffin, “RNA Tumor Viruses: Molecular Biology of Tumor Viruses,” 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1985).Google Scholar
  7. 7.
    P. H. Duesberg, Retroviruses as carcinogens and pathogens: Expectations and reality, Cancer Res. 47:1199–1220 (1987).PubMedGoogle Scholar
  8. 8.
    G. S. Martin and P. H. Duesberg, The a-subunit on the RNA of transforming avian tumor viruses: (I) Occurrence in different virus strains; (II) Spontaneous loss resulting in non-transforming variants, Virology 47:494–497 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    J. M. Coffin, P. N. Tsichlis, C. S. Barker, S. Voynow, and H. L. Robinson, Variation in avian retrovirus genomes, Ann. N. Y. Acad. Sci. 354:410–425 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    H. M. Temin, Evolution of cancer genes as a mutation-driven process, Cancer Res. 48:1697–1701 (1988).PubMedGoogle Scholar
  11. 11.
    P. H. Duesberg and P. K. Vogt, Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses, Proc. Natl. Acad. Sci. USA 67:1673–1680 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    P. H. Duesberg, Transforming genes of retroviruses, Cold Spring Harbor Symp. Quant. Biol. 44:12–27 (1979).Google Scholar
  13. 13.
    P. H. Duesberg, Retroviral transforming genes in normal cells? Nature 304:219–226 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    N. D. Zinder, Infective heredity in bacteria, Cold Spring Harbor Symp. Quant. Biol. 18:261–269 (1953).PubMedCrossRefGoogle Scholar
  15. 15.
    E. M. Scolnick, F. Rands, P. Williams, and W. P. Parks, Studies on the nucleic acid sequences of Kirsten sarcoma virus: A model for formation of a mammalian RNA-containing sarcoma virus, J. Virol. 12:458–463 (1973).PubMedGoogle Scholar
  16. 16.
    E. M. Scolnick and W. P. Parks, Harvey sarcoma virus: A second murine type C sarcoma virus with rat genetic information, J. Virol. 13:1211–1219 (1974).PubMedGoogle Scholar
  17. 17.
    P. Mellon, A. Pawson, K. Bister, G. S. Martin, and P. H. Duesberg, Specific RNA sequences and gene products of MC29 avian acute leukemia virus, Proc. Natl. Acad. Sci., USA 75:5874–5878 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    D. K. Watson, E. P. Reddy, P. H. Duesberg, and T. S. Papas, Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, delta-gag-myc, Proc. Natl. Acad. Sci., USA 80:2146–2150 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    J. M. Bishop, Enemies within: The genesis of retrovirus oncogenes, Cell 23:5–6 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Weiss, N. Teich, H. Varmus, and J. Coffin, “RNA Tumor Viruses: Molecular Biology of Tumor Viruses,” Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  21. 21.
    J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner, in: “Molecular Biology of the Gene,” Vol. II, Benjamin Publishing Co., New York (1987).Google Scholar
  22. 22.
    R. A. Weiss, The oncogene concept, Cancer Rev. 2:1–17 (1986).Google Scholar
  23. 23.
    A. G. Knudson, Jr., Hereditary cancer, oncogenes, and antioncogenes, Cancer Res., 45:1437–1443 (1985).PubMedGoogle Scholar
  24. 24.
    S. H. Friend, R. Bernards, S. Rogelj, R. A. Weinberg, J. M. Rapaport, D. M. Albert, and T. P. Dryja, A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma, Nature 323:643–646 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Varmus, The molecular genetics of cellular oncogenes, Ann. Rev. Genet. 18:553–612 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    J. M. Bishop, The molecular genetics of cancer, Science 235:305–311 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Marshall, Human oncogenes, in: “RNA Tumor Viruses: Molecular Biology of Tumor Viruses,” 2nd ed., R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor (1985).Google Scholar
  28. 28.
    M. Barbacid, Mutagens, oncogenes and cancer, Trends Genet. 2:188–192 (1986).CrossRefGoogle Scholar
  29. 29.
    R. Nusse, The int genes in mammary tumorigenesis and in normal development, Trends in Gen. 4:291–295 (1988).CrossRefGoogle Scholar
  30. 30.
    C. J. Tabin, S. M. Bradley, C. I. Bargmann, R. A. Weinberg, A. G. Papageorge, E. M. Scolnick, R. Dhar, D. R. Lowy, and E. H. Chang, Mechanism of activation of a human oncogene, Nature 300:143–149 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    E. P. Reddy, R. K. Reynolds, E. Santos, and M. Barbacid, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature 300:149–152 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    W. S. Hayward, B. G. Neel, and S. M. Astrin, Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 290:475–480 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    G. S. Payne, J. M. Bishop, and H. E. Varmus, Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas, Nature 295:209–214 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Cairns, “Cancer: Science and Society,” W. H. Freeman and Company, San Francisco (1978).Google Scholar
  35. 35.
    S. Heim, N. Mandahl, and F. Mitelman, Genetic convergence and divergence in tumor progression, Cancer Res. 48:5911–5916 (1988).PubMedGoogle Scholar
  36. 36.
    K. Cichutek and P. H. Duesberg, Harvey ras genes transform without mutant codons, apparently activated by truncation of a 5′ exon (exon-1), Proc. Natl. Acad. Sci., USA 83:2340–2344 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Cichutek and P. H. Duesberg, Recombinant Balb and Harvey sarcoma viruses with normal proto-ras coding regions transform embryo cells in culture and cause tumors in mice, J. Virol. (in press) (March, 1989).Google Scholar
  38. 38.
    R.-P. Zhou and P. H. Duesberg, myc proto-oncogene linked to retroviral promoter, but not to enhancer, transforms embryo cells, Proc. Natl. Acad. Sci., USA 85:2924–2928 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Pfaff and P. H. Duesberg, Two autonomous myc oncogenes in avian carcinoma virus OK10, J. Virol. 62:3703–3709 (1988).PubMedGoogle Scholar
  40. 40.
    H. Land, L. F. Parada, and R. A. Weinberg, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Balmain, M. Ramsden, G. T. Bowden, and J. Smith, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature 307:658–660 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    S. H. Reynolds, S. J. Stowers, R. R. Maronpot, M. W. Anderson, and S. A. Aaronson, Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83:33–37 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder, Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo, Cell 49:465–475 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    J. M. Adams, A. W. Harris, C. A. Pinkert, L. M. Corcoran, W. S. Alexander, R. Cory, D. Palmiter, and R. L. Brinster, The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature 318:533–538 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    W. S. Alexander, J. W. Schrader, and J. Adams, Expression of the c-myc oncogene under control of an immunoglobulin enhancer in Eu-myc transgenic mice, Mol. Cell Biol. 7:1436–1444 (1987).PubMedGoogle Scholar
  46. 46.
    S. R. Wolman, Karyotypic progression in human tumors, Canc. Met. Rev. 2:257–293 (1983).CrossRefGoogle Scholar
  47. 47.
    J. M. Trent, Chromosomal alterations in human solid tumors: Implications of the stem cell model to cancer cytogenetics, Cancer Surv. 3:393–422 (1984).Google Scholar
  48. 48.
    A. Levan, Chromosomes in cancer tissue, Ann. N. Y. Acad. Sci. 63:774–792 (1956).PubMedCrossRefGoogle Scholar
  49. 49.
    P. Leder, J. Battey, G. Lenoir, C. Moulding, W. Murphy, M. Potter, T. Stewart, and R. Taub, Translocations among antibody genes in human cancer, Science 227:765–771 (1983).CrossRefGoogle Scholar
  50. 50.
    G. Klein, Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men, Cell 32:311–315 (1983).PubMedCrossRefGoogle Scholar
  51. 51.
    R. J. Biggar, E. C. Lee, F. K. Nkrumah, and J. Whang-Peng, Direct cytogenetic studies by needle stick aspiration of Burkitt’s lymphoma in Ghana, West Africa, J. Natl. Cancer Inst. 67:769–776 (1981).PubMedGoogle Scholar
  52. 52.
    R. Berger, A. Bernheim, F. Sigaux, F. Valensi, M.-T. Daniel, and G. Flandrin, Two Burkitt’s lymphomas with chromosome 6 long arm deletions, Canc. Gen. & Cytogen. 15:159–167 (1985).CrossRefGoogle Scholar
  53. 53.
    A. D. Goddard, H. Balakier, M. Canton, J. Dunn, J. Squire, E. Reyes, A. Becker, R. A. Phillips, and B. L. Gallie, Infrequent genomic rearrangement and normal expression of the putative Rb1 gene in retinoblastoma tumors, Mol. Cell. Biol. 8(5):2082–2088 (1988).PubMedGoogle Scholar
  54. 54.
    J. M. Coffin, Structure, replication, and recombination of retrovirus genomes: Some unifying hypotheses, J. Gen. Virol. 42:1–26 (1979).PubMedCrossRefGoogle Scholar
  55. 55.
    M. P. Goldfarb and R. A. Weinberg, Structure of the proviruses within NIH 3T3 cells transfected with Harvey sarcoma virus DNA, J. Virol. 38:125–135 (1981).PubMedGoogle Scholar
  56. 56.
    P. H. Duesberg, Physical properties of Rous sarcoma RNA, Proc. Natl. Acad. Sci. USA 60:1511–1518 (1968).PubMedCrossRefGoogle Scholar
  57. 57.
    W. F. Mangel, H. Delius, and P. H. Duesberg, Structure and molecular weight of the 60–70S RNA and the 30–40S RNA of the Rous sarcoma virus, Proc. Natl. Acad. Sci., USA 71:4541–4545 (1974).CrossRefGoogle Scholar
  58. 58.
    D. W. Goodrich and P. H. Duesberg, Retroviral transduction of oncogenic sequences involves viral DNA instead of RNA, Proc. Natl. Acad. Sci., USA 85:3733–3737 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    D. Hanahan, D. Lane, L. Lipsich, M. Wigler, and M. Botchan, Characteristics of an SV-40 plasmid recombinant and its movement into and out of the genome of a murine cells, Cell 21:127–140 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    R. T. Schimke, S. W. Sherwood, A. B. Hill, and R. N. Johnston, Over-replication and recombination of DNA in higher eukaryotes: Potential consequences and biological implications, Proc. Natl. Acad. Sci., USA 83:2157–2161 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Peter H. Duesberg
    • 1
  • David Goodrich
    • 1
  • Ren-Ping Zhou
    • 1
  1. 1.Department of Molecular BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations