Recessive Mutations in Cancer Predisposition and Progression

  • Webster K. Cavenee
Part of the Basic Life Sciences book series (BLSC, volume 57)


Cancer is widely considered to represent the phenotypic manifestation of the accumulation of genetic damage1, and this notion is the subject of much of the present volume. There is a great deal of circumstantial evidence in its support which arises from examination of human populations2. There has been, for example, extensive documentation of familial aggregation of specific histological types of tumors, sometimes developing with the formal behaviour of an autosomal dominant Mendelian trait. At the level of cytogenetics, various chromosomal aberrations of the germline appear to result in increased propensities for the development of tumors. Tumors often have specific chromosomal rearrangements and, sometimes, such aberrations resemble those which, when inherited, predispose to similar disease.


Recessive Mutation Malignancy Grade Restriction Fragment Length Polymorphism Marker Chromosome Region 13q14 High Malignancy Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Nowell, The clonal evolution of tumor cell populations, Science 194:23–28 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Nordenskjold, and W. K. Cavenee, Genetics and the etiology of solid tumors, in: “Important Advances in Oncology 1988,” V. T. DeVita, S. Hellman, and S. A. Rosenberg, eds., J. B. Lippincott, Philadelphia (1988).Google Scholar
  3. 3.
    J. J. Mulvihill, Genetic repertory of human neoplasia, in: “Genetics of Human Cancer,” J. J. Mulvihill, R. W. Miller, and J. F. Fraumeni, eds., Raven Press, New York (1977).Google Scholar
  4. 4.
    U. Francke, Retinoblastoma and chromosome 13, Cytogenet. Cell Genet. 16:131–134 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    L. C. Strong, V. M. Riccardi, R. E. Ferrell, and R. S. Sparkes, Familial retinoblastoma and chromosome 13 deletion transmitted via an insertional translocation, Science 213:1501–1503 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Squire, B. L. Gallie, and R. A. Phillips, A detailed analysis of chromosomal changes in heritable and nonheritable retinoblastoma, Hum. Genet. 70:291–301 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    A. G. Knudson, Jr., Mutation and cancer: Statistical study of retinoblastoma, Proc. Natl. Acad. Sci., U.S.A. 68:820–823 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    R. S. Sparkes, A. L. Murphree, R. W. Lingua, M. C. Sparkes, L. L. Field, S. J. Funderburk, and W. F. Benedict, Gene for hereditary retinoblastoma assigned to chromosome 13 by linkage to esterase D, Science 219:971–973 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    W. K. Cavenee, T. P. Dryja, R. A. Phillips, W. F. Benedict, R. Godbout, B. L. Gallie, A. L. Murphree, L. C. Strong, and R. L. White, Expression of recessive alleles by chromosomal mechanisms in retinoblastoma, Nature 305:770–784 (1983).CrossRefGoogle Scholar
  10. 10.
    W. K. Cavenee, M. F. Hansen, E. Kock, M. Nordenskjold, I. Maumenee, J. A. Squire, R. A. Phillips, and B. L. Gallie, Genetic origins of mutations predisposing to retinoblastoma, Science 228:501–503 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    F. D. Kitchin, and R. M. Ellsworth, Pleiotropic effects of the gene for retinoblastoma, J. Med. Genet. 11:244–246 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    M. F. Hansen, A. Koufos, B. L. Gallie, R. A. Phillips, O. Fodstad, A. Brogger, T. Gedde-Dahl, and W. K. Cavenee, Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition, Proc. Natl. Acad. Sci., U.S.A. 82:6216–6220 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    S. H. Friend, R. Bernards, S. Rogelj, R. A. Weinberg, J. M. Rapoport, D. M. Albert, and T. P. Dryja, A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma, Nature 323:643–646 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    M. F. Hansen, and W. K. Cavenee, Retinoblastoma and the progression of tumor genetics, Trends in Genet. 4:125–128 (1987).CrossRefGoogle Scholar
  15. 15.
    C. D. James, E. Carlbom, J. P. Dumanski, M. Hansen, M. Nordenskjold, V. P. Collins, and W. K. Cavenee, Clonal genomic alterations in glioma malignancy stages, Cancer Res. 48:5546–5551 (1988).PubMedGoogle Scholar
  16. 16.
    W. R. Shapiro, Treatment of neuroectodermal tumors, Ann. Neurol. 12:231–237 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    S. H. Bigner, J. Mark, M. S. Mahaley, and D. D. Bigner, Patterns of the early gross chromosomal changes in malignant human gliomas, Hereditas 101:103–113 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    P. C. Burger, F. S. Vogel, S. B. Green, and T. A. Strike, Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications, Cancer 56:1106–1111, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Webster K. Cavenee
    • 1
  1. 1.Ludwig Institute for Cancer ResearchRoyal Victoria HospitalMontrealCanada

Personalised recommendations