Differential Gene Expression During Tumor Promotion and Progression in the Mouse Skin Model

  • G. Tim Bowden
  • Lawrence E. Ostrowski
  • Keith Bonham
  • Peter Krieg
Part of the Basic Life Sciences book series (BLSC, volume 57)


The boundary between promotion and progression in experimental carcinogenesis can be operationally defined as long as stable intermediate stages of tumor formation can be identified. Once operational definitions have been made, investigators can and should pursue questions of molecular mechanisms to explain phenotypic changes that occur during promotion and progression. This paper deals with the identification and characterization of molecular markers (i.e., differentially expressed cellular genes) that identify different stages of mouse skin tumor formation. These marker genes whose steady state levels of messenger are elevated at specific stages in skin tumor formation can serve to define the stages of promotion and progression. There is also the possibility that overexpression of one or a number of these genes actually plays a functional role in tumor formation.


Tumor Promoter Mouse Skin Back Skin Normal Epidermis Benign Papilloma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Slaga, Overview of tumor promotion in animals, Environ. Health Perspect. 50:3–20 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    J. F. O’Connell, A. J. P. Klein-Szanto, D. M. DiGiovanni, J. W. Fries, and T. J. Slaga, Malignant progression of mouse skin papillomas treated with ethylnitrosourea, N-methyl-N′-nitro-N-nitrosoguanidine, or 12-0-tetradecanoylphorbol-13-acetate, Cancer Lett. 30:269–274 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Hennings, R. Shores, M. L. Weick, E. F. Spangler, R. Tarone, and S. H. Yuspa, Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters, Nature 304:67–69 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    D. R. Jaffe, J. F. Williamson, and G. T. Bowden, Ionizing radiation enhances malignant progression of mouse skin tumors, Carcinogenesis 8:1753–1755 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    G. J. Patskan, A. J. P. Klein-Szanto, J. L. Philips, and T. J. Slaga, Metastasis from squamous cell carcinomas of Sencar mouse skin produced by complete carcinogenesis, Cancer Lett. 34:121–127 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Melber, P. Krieg, G. Furstenberger, and F. Marks, Molecular cloning of sequences activated during multi-stage carcinogenesis in mouse skin, Carcinogenesis 7:317–322 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    L. M. Matrisian, G. T. Bowden, P. Krieg, G. Furstenberger, J. P. Briand, P. Leroy, and R. Breathnach, The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors, Proc. Natl. Acad. Sci. 83:9413–9417 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Balmain, R. Krumlauf, J. K. Vass, and G. D. Birnie, Cloning and characterization of the abundant cytoplasmic 7S RNA from mouse cells, Nucleic Acid Res. 10:4259–4262 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Krieg, K. Melber, G. Furstenberger, and G. T. Bowden, in: “Growth Factors, Tumor Promoters and Cancer Genes” (UCLA Symposium on Molecular and Cellular Biology), N. Colburn, H. Moses, E. Stanbridge, eds., Alan R. Liss, New York, 1987.Google Scholar
  10. 10.
    G. I. Goldberg, S. M. Wilhelm, A. Kornberger, E. A. Bauer, G. A. Grant, A. Z. Eisen, Human fibroblast collagenase: complete primary structure and homology to an oncogene transformation-induced rat protein, J. Biol. Chem. 261:6600–6605 (1986).PubMedGoogle Scholar
  11. 11.
    S. E. Whitman, G. Murphy, P. Angel, N. J. Rahmsdorf, B. J. Smith, A. Lyons, T. J. R. Harris, J. J. Reynolds, P. Herrlich, and J. P. Docherty, Comparison of human stromelysin and collagenase by cloning and sequence analysis, Biochem. J. 240:913–916 (1986).Google Scholar
  12. 12.
    P. Mignatti, E. Robbins, and D. B. Rifkin, Tumor invasion through the human amniotic membrane: requirement for proteinase cascade, Cell 47:487–498 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    L. E. Ostrowski, J. Finch, P. Krieg, L. Matrisian, G. Patskan, J. F. O’Connell, J. Phillips, T. J. Slaga, R. Breathnach, and G. T. Bowden, Expression pattern of a gene for a secreted metalloproteinase during late stages of tumor progression, Molecular Carcinogenesis 1:13–19 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Breathnach, L. N. Matrisian, M.-C. Gesnal, A. Staub, and P. Leroy, Sequences coding for part of oncogene-induced transin are highly conserved in a related rat gene, Nucleic Acid Res. 15:1139–1151 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Krieg, J. Finch, G. Furstenberger, K. Melber, L. Matrisian, and G. T. Bowden, Tumor promoters induce a transient expression of tumor specific genes in both basal and differentiated cells of the mouse epidermis, Carcinogenesis 9:95–100 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Furstenberger, D. L. Berry, B. Song, and F. Marks, Skin tumor promotion by phorbol esters is a two-stage process, Proc. Natl. Acad. Sci. USA 78:7722–7726 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    J. E. Paulsen and E. G. Astrup, Effects of single applications of 12-0-tetradecanoylphorbol-13-acetate, merzerein or ethylphenylpropiolate on DNA synthesis and polyamine levels in hairless mouse epidermis, Cancer Res. 43:4126–4131 (1983).PubMedGoogle Scholar
  18. 18.
    J. R. Chen, G. Murphy, and Z. Werb, Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase, J. Biol. Chem. 260:12367–12376 (1985).Google Scholar
  19. 19.
    S. Garbisa, R. Pozzatti, R. J. Muschel, U. Saffiotti, M. Ballin, R. H. Goldfarb, G. Khoury, and L. A. Liotta, Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-Ela, Cancer Res. 47:1523–1528 (1987).PubMedGoogle Scholar
  20. 20.
    R. Morrier, L. Daza-Grosjean, and A. Sarasin, The effect of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) on cell transformation by simian virus 40 mutants, in “Carcinogenesis: Fundamental Mechanisms and Environmental Effects”, B. Pullman, P. Tso, and H. Gelboin, eds., Reidel, Dordrecht (1980).Google Scholar
  21. 21.
    P. Angel, A. Poting, U. Mallick, H. J. Rahmsdorf, M. Schorpp, and P. Herrlich, Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts, Mol. Cell Biol. 6:1760–1766 (1986).PubMedGoogle Scholar
  22. 22.
    L. Krieg, I. Kuhlmann, and F. Marks, Effect of tumor-promoting phorbol ester and of acetic acid on mechanisms controlling DNA synthesis and mitosis (Chalones) and on the biosynthesis of histidine-rich protein on mouse epidermis, Cancer Res. 23:3135–3146 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. Tim Bowden
    • 1
  • Lawrence E. Ostrowski
    • 1
  • Keith Bonham
    • 1
  • Peter Krieg
    • 2
  1. 1.Radiation Oncology DepartmentUniversity of Arizona Medical SchoolTucsonUSA
  2. 2.Institute for Virus ResearchGerman Cancer Research CenterHeidelbergWest Germany

Personalised recommendations