SV40 T Antigen Transgenic Mice: Cytotoxic T Lymphocytes as a Selective Force in Tumor Progression

  • Barbara B. Knowles
  • Susan Faas
  • Antonio Juretic
  • Niles Fox
  • Roseanne Crooke
  • Douglas Hanahan
  • Davor Solter
  • Lorraine Jewett
Part of the Basic Life Sciences book series (BLSC, volume 57)


The specific immune response to some antigenic determinants expressed on the initiated cell can be a contributing factor to the prevention of tumor appearance. Indeed, one aspect of tumor progression may be the evolution and selection of tumor cell variants capable of avoiding the immune response of the host. The oncogenic virus-induced tumors have provided the most direct evidence for these points; viral gene products elicit specific immune responses, and the normal cell-virus infected cell-virally transformed cell praxis provides an experimental system to test these concepts. However, in vivo tumorigenicity testing of cells transformed by viruses in vitro does not provide proof for these hypotheses since the characteristics of these cells following growth in vitro cannot reflect those of the analogous tumor cells arising in the selective environment of the intact organism. The development of the simian virus (SV40) tumor (T) antigen (ag) transgenic mouse1 has provided a model system in which the specific contribution, if any, of host immunity to the control of these endogenous tumors can be evaluated. Moreover, because expression of the viral transforming gene can be targeted to different tissues, by linking the sequences encoding the SV40 T/t antigens to those controlling transcription of other genes in specific cell types, a wide range of tumor types are available for comparison2–5. Expression of sufficient levels of the viral oncogene potentiates tumor formation but their appearance is controlled by subsequent events which may vary depending on the cell type and on the developmental time in which SV40 Tag is expressed.


Permanent Cell Line Viral Gene Product Tumor Appearance Thymic Stromal Cell Hyperplastic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Brinster, C. Howe, A. Messing, T. Van Dyke, A. Levine, and R. Palmiter, Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors, Cell 37:376–387 (1984).CrossRefGoogle Scholar
  2. 2.
    A. Messing, H. Y. Chen, R. D. Palmiter, and R. L. Brinster, Peripheral neuropathies, hepatocellular carcinomas and islet cell adenomas in transgenic mice, Nature 316:461–463 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Hanahan, Heritable formation of pancreatic β-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes, Nature 315:115–122 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    L. J. Field, Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice, Science 239:1029–1033 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    N. Fox, R. Crooke, L.-H. Hwang, U. Schibler, B. B. Knowles, and D. Solter, Expression of an α-amylase SV40 T antigen hybrid gene in transgenic mice results in metastatic tumors of brown adipose tissue, Science (1989) (In Press).Google Scholar
  6. 6.
    J. Abramczuk, S. Pan, G. Maul, and B. B. Knowles, Tumor induction by simian virus 40 in the mouse is controlled by long term persistence of the viral genome and the immune response of the host, J. Virol. 49:540–548 (1984).PubMedGoogle Scholar
  7. 7.
    K. Pfizenmaier, S. Pan, and B. B. Knowles, Preferential H-2 association in cytotoxic T-cell responses to SV40 tumor-associated specific antigens, J. Immunol. 124:1888–1891 (1980).PubMedGoogle Scholar
  8. 8.
    S. Pan, J. Abramczuk, and B. B. Knowles, Immune control of 40-induced tumors in mice, Int. J. Canc. 39:722–728 (1987).CrossRefGoogle Scholar
  9. 9.
    L. R. Gooding, Characterization of a progressive tumor from C3H-fibroblasts transformed in vitro with SV40 virus. Immunoresistance in vivo correlates with phenotypic loss of H-2Kk, J. Immunol. 129:1306–1312 (1982).PubMedGoogle Scholar
  10. 10.
    P. C. Doherty, B. B. Knowles, and P. J. Wettstein, Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T cell function, Ad. Canc. Res. 42:1–65 (1984).CrossRefGoogle Scholar
  11. 11.
    R. D. Palmiter, C. Y. Howe, A. Messing, and R. L. Brinster, SV40 enhancer and large T antigen are instrumental in development of choroid plexus tumors in transgenic mice, Nature 316:457–460 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    S. J. Faas, S. Pan, C. A. Pinkert, R. L. Brinster, and B. B. Knowles, Simian virus 40 (SV40)-transgenic mice that develop tumors are specifically tolerant to SV40 T antigen, J. Exp. Med. 165:417–427 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    T. VanDyke, C. Finlay, and A. J. Levine, A comparison of several lines of transgenic mice containing the SV40 early genes, CSH Symp. Quant. Biol. 50:671–678 (1985).CrossRefGoogle Scholar
  14. 14.
    P. J. Wettstein, L. Jewett, S. Faas, R. L. Brinster, and B. B. Knowles, SV40 T antigen is a histocompatibility antigen of SV40-transgenic mice, Immunogenetics 27:436–441 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Juretic, and B. B. Knowles, Frequency of SV40-specific cytotoxic T lymphocyte precursors in two SV40 T antigen transgenic mouse lines (1989) (Manuscript submitted).Google Scholar
  16. 16.
    S. Fazekas de St. Groth, The evaluation of limiting dilution assays, J. Immunol. Methods 49:R11–R23 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    H. R. Snodgrass, R. Kisielow, M. Kieter, M. Steinmetz, and H. von Boehmer, Ontogeny of the T-cell antigen receptor within the thymus, Nature 313:592–594 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    D. H. Raulet, R. D. Gorman, H. Saito, and S. Tonegawa, Developmental regulation of T-cell receptor gene expression, Nature 314:103–106 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Kisielow, H. S. Teh, H. Bluthmann, and H. von Boehmer, Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes, Nature 333:742–746 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    J. W. Kappler, U. Staerz, J. White, and P. C. Marrack, Self-tolerance eliminates T cells specific for MLs-modified products of the major histocompatibility complex, Nature 332:35–38 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    H. R. MacDonald, R. Schneider, R. K. Lees, R. C. Howe, H. Acha-Orbea, H. Festenstein, R. M. Zinkernagel, and H. Hentgartner, T-cell receptor V-beta use predicts reactivity and tolerance to MLs a-encoded antigens, Nature 332:40–44 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    S. J. Faas and B. B. Knowles, Establishment and characterization of thymic cortical medullary and IDC-like cell lines that support stem cell proliferation, manuscript submitted.Google Scholar
  23. 23.
    S. Pan and B. B. Knowles, Monoclonal antibody to SV40 T-antigen blocks lysis of cloned cytotoxic T-cell line specific for SV40 TASA, Virology 125:1–6 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497 (1977).CrossRefGoogle Scholar
  25. 25.
    B. Jones and C. A. Janeway, Cooperative interaction of B lymphocytes with antigen specific helper T lymphocytes is MHC restricted, Nature 292:547–549 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    U. Schibler, P. H. Shaw, F. Sierra, O. Hagenbuchle, P. K. Wellauer, et al., Structural arrangement and tissue-specific expression of the two murine alpha-amylase loci Amy-1 and Amy-2, in: “Oxford Surveys on Eucaryotic Genes,” N. MacLean, ed., 3:210–234, Oxford University Press, Oxford (1986).Google Scholar
  27. 27.
    D. M. Ornitz, R. E. Hammer, A. Messing, R. D. Palmiter, and R. L. Brinster, Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice, Science 238:188–193 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    T. E. Adams, S. Alpert, and D. Hanahan, Non-tolerance and auto antibodies to a transgenic self antigen expressed in pancreatic β-cells, Nature 325:223–228 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Baekkeskov, T. Kanatsuna, L. Kereskog, D. A. Nielsen, P. A. Peterson, A. H. Rubenstein, D. F. Steiner, and A. Lernmark, Expression of major histocompatibility antigens on pancreatic islet cells, Proc. Natl. Acad. Sci. USA 78:6456–6460 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    G. G. Bottazzo, R. Pujol-Borrell, T. Hanafusa, and M. Feldman, Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity, Lancet ii:1115–1119 (1983).CrossRefGoogle Scholar
  31. 31.
    A. Gilligan, L. Jewett, D. Simon, I. Damjanov, F. M. Matchinsky, H. Weik, C. Pinkert, and B. B. Knowles, Functional pancreatic beta-cell line from an SV40 T antigen transgenic mouse, Diabetes (1989) (In Press).Google Scholar
  32. 32.
    S. Efrat, S. Linde, H. Kofod, D. Spector, M. Delannoy, S. Grant, D. Hanahan, and S. Baekkeskov, β-cell lines derived from transgenic mice expressing hybrid insulin-oncogenes. Proc. Natl. Acad. Sci. USA 85:9037–9041 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Barbara B. Knowles
    • 1
  • Susan Faas
    • 1
  • Antonio Juretic
    • 1
  • Niles Fox
    • 1
  • Roseanne Crooke
    • 1
  • Douglas Hanahan
    • 2
  • Davor Solter
    • 1
  • Lorraine Jewett
    • 1
  1. 1.The Wistar InstitutePhiladelphiaUSA
  2. 2.Department of BiochemistryUniversity of California Medical SchoolSan FranciscoUSA

Personalised recommendations