Optical Absorption and Emission Spectroscopy of Photoreceptor Pigments

  • Francesco Lenci
Part of the NATO ASI Series book series (NSSA, volume 211)


The common purpose of all sensory photopigments is the detection of light signals from the environment and the conversion of these external inputs into triggers for the transduction process, which, in our case, ends in the motile response of microorganisms to photic stimuli. To be efficient light detectors and signal converters, photoreceptor molecules usually have to be arranged in relatively ordered structures, such as, e. g., membranes, which they are embedded in or associated with, or paracrystalline-type structures which they are fixed in.


Polyatomic Molecule Euglena Gracilis Solvatochromic Shift Photic Stimulus Phosphorescence Quantum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Reference Textbooks

  1. Burnett, G. M., and North, A. M. (eds.), 1969, “Transfer and Storage of Energy by Molecules,” Wiley, New York.Google Scholar
  2. Christophorou, L. G., 1971, “Atomic and Molecular Radiation Physics,” Wiley, New York.Google Scholar
  3. Clayton, R. K., 1970, “Light and Living Matter,” McGraw-Hill, New York.Google Scholar
  4. Di Bartolo, B., Pacheco., and Goldberg, V. (eds.), 1975, “Spectroscopy of the Excited State,” Plenum, New York.Google Scholar
  5. Grell, E. (ed.), 1981, “Membrane Spectroscopy,” Springer, Berlin.Google Scholar
  6. Guilbault, G. G. (ed.), 1973, “Practical Fluorescence,” Dekker, New York.Google Scholar
  7. Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H. (eds.), 1983, “Biophysics,” Springer, Berlin.Google Scholar
  8. Lakowicz, J. R., 1983, “Principles of Fluorescence Spectroscopy,” Plenum, New York.Google Scholar
  9. Schulman, S. G., 1977, “Fluorescence and Phosphorescence Spectroscopy: Physicochemical Principles and Practice,” Pergamon, Oxford.Google Scholar

Specialized References

  1. Benedetti, P. A., Bianchini, G., Checcucci, A., Ferrara, R., Grassi, S., and Percival, D., 1976, Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis, Arch. Microbiol., 111:73.PubMedCrossRefGoogle Scholar
  2. Benedetti, P. A., and Lend, F., 1977, In vivo microspectrofluorometry of photoreceptor pigments in Euglena gracilis, Photochem. Photobiol., 26:315.CrossRefGoogle Scholar
  3. Colombetti, G., and Lend, F., 1983, Photoreception and photomovements in microorganisms, in “The Biology of Photoreception,” D. J. Cosens and D. Vince-Prue, eds., Oxford, pp. 399.Google Scholar
  4. Cubeddu, R., Ghetti, F., Lend, F., Ramponi, R., and Taroni, P., 1990, Timegated fluorescence of blepha-rismin, the photoreceptor pigment for photomovement of Blepharisma, Photochem. Photobiol., 52:567.CrossRefGoogle Scholar
  5. Foster, K. W., Saranak, J., Derguini, F., Zarilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal, Biochemistry, 28:819.PubMedCrossRefGoogle Scholar
  6. Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas, Nature, 311:756.PubMedCrossRefGoogle Scholar
  7. Galland, P., Keiner, P., Doernemann, D., Senger, H., Brodhun, B., and Hader, D.-P., 1990, Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis, Photochem. Photobiol., 51: 675.Google Scholar
  8. Ghetti, F., Colombetti, G., Lend, F., Campani, E., Polacco, E., and Quaglia, M., 1985, Fluorescence of Euglena gracilis photoreceptor pigment: an in vivo microspectrofluorometric study, Photochem. Photobiol., 42:29.CrossRefGoogle Scholar
  9. Gualtieri, P., 1990, Microspectroscopy of photoreceptor pigments in flagellated algae, Critical Reviews in Plant Sciences, in pressGoogle Scholar
  10. Gualtieri, P., Barsanti, L., and Passarelli, V., 1989, Absorption spectrum of a single isolated paraflagellar swelling of Euglena gracilis, Biochim. Biophys. Acta, 993:293.CrossRefGoogle Scholar
  11. Häder, D. P., 1987, Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate Euglena gracilis, Arch. Microbiol., 147:179.PubMedCrossRefGoogle Scholar
  12. Koziol, J., and Szafran, M. M., 1990, Spectral properties of riboflavin tetrabutyrate in the presence of hydrogen-bonding agents, J. Photochem. Photobiol. B, 5:429.CrossRefGoogle Scholar
  13. Lenci, F., and Colombetti, G., eds., 1980, “Photoreception and Sensory Transduction in Aneural Organisms,” Plenum, London.Google Scholar
  14. Lenci, F., and Ghetti, F., 1989, Photoreceptor pigments for photomovement of microorganisms: some spectroscopic and related studies, J. Photochem. Photobiol. B, 3:1.CrossRefGoogle Scholar
  15. Lenci, F., Ghetti, F., Gioffre, D., Passarelli, V., Heelis, P. F., Thomas, B., Phillips, G. O., and Song, P.-S., 1989, Effect of molecular environment on some spectroscopic properties of Blepharisma photoreceptor pigment, J. Photochem. Photobiol. B, 3:449.CrossRefGoogle Scholar
  16. Schmidt, W., 1979, On the environment and the rotational motion of amphiphilic flavins in artificial vesicles as studied by fluorescence, J. Membrane Biol., 47:1.CrossRefGoogle Scholar
  17. Song, P. S., 1987, Possible primary photoreceptors, in: “Blue Light Responses,” H. Senger, ed., CRC Press, Boca Raton, pp. 3–17.Google Scholar
  18. Song, P.-S., 1983, Protozoan and related photoreceptors: molecular aspects, Ann. Rev. Biophys. Bioeng., 12:35.CrossRefGoogle Scholar
  19. Song, P.-S., and Moore, T. A., 1974, On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate?, Photochem. Photobiol., 19:435.PubMedCrossRefGoogle Scholar
  20. Spikes, J. D., 1989, Photosensitization,. in: “The Science of Photobiology,” K. C. Smith, ed., Plenum, New York, pp. 79–110.CrossRefGoogle Scholar
  21. Stryer, L., Thomas, D. D., and Meares, C. F., 1982, Diffusion enhanced fluorescence energy transfer, Ann. Rev. Biophys. Bioeng., 11:203.CrossRefGoogle Scholar
  22. Suppan, P., 1990, Solvatochromic shifts: the influence of the medium on the energy of electronic states, J. Photochem. Photobiol. A, 50: 293.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Francesco Lenci
    • 1
  1. 1.CNR Istituto di BiofisicaPisaItaly

Personalised recommendations