Mechanism and Strategies of Photomovement in Protozoa

  • Michael J. Doughty
Part of the NATO ASI Series book series (NSSA, volume 211)


The subkingdom of the protozoa contains many different types of single celled organisms and some colonial (aggregate) forms that have been of interest to those interested in photomovement. In an older review by Bendix (1960), an evaluation of the photomovements of these different organisms, as reported by various researchers, was conducted by making reference to the orders to which each of the protozoa belonged. Revisions have been made both in the terminology (or naming of the protozoa) and also in the systematic grouping for classification (Lee et al., 1985). A re-evaluation of photomovements in the protozoa based on a systematics approach will hopefully prove useful if for no other reason than being considered as an update. Emphasis will be placed on the grouping of the protozoa by their subphyla, classes, (sub)orders. Within such a scheme, the current status of knowledge within each group will be briefly reviewed by highlighting aspects of the photochemical basis for the responses, the information available on possible transduction schemes and to compare the characteristics of the overall photomovements. Any order or genus where photobehavior has not obviously been reported has been omitted for convenience but noted in summary at the end. In this systematics approach, all of the subclass and suborder details are not included since there does not seem to be enough information at this time to warrant a systematics evaluation at a level beyond the individual (sub)orders. Full details of the classifications can be found in the recent text published by Lee, Hutner and Bovee (1985).


Action Spectrum Light Trap Fluence Rate Slime Mould Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamich, M., Lais, P. C., and Sweeney, B. M., 1976, In vivo evidence for a cireadian rhythm in membranes of Gonyaulax, Nature, Lond., 261:583.CrossRefGoogle Scholar
  2. Arnal, F., Reeer, G., and Hanna, 1984, Photostimulation of aggregation in the slime mould Polysphondylium violaceum, Photochem. PhotobioL, 40:519.CrossRefGoogle Scholar
  3. Barcello, J. A., and Calkins, J., 1979, Positioning of aquatic microorganisms in response to visible light and simulated solar UV-B irradiation, Photochem. Photobiol., 29:75.CrossRefGoogle Scholar
  4. Barghigiani, C., Colombetti, G., Franchini, B., and Lenci, F., 1979, Photobehavior of Euglena gracilis: action spectrum for the step-down photophobic responses of individual cells, Photochem. Photobiol., 29:1015.CrossRefGoogle Scholar
  5. Bendix, S. W., 1960, Phototaxis, Botan. Rev., 26:145.CrossRefGoogle Scholar
  6. Beneditti, P. A., and Checcucci, A., 1975, Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis, Plant Sci. Lett., 4:47.CrossRefGoogle Scholar
  7. Bouck, G. B., 1971, The structure, origin, isolation and composition of the tubular mastigonemes of the Ochromonas flagellum, J. Cell Biol., 50:362.PubMedCrossRefGoogle Scholar
  8. Brokaw, C. J., and Luck, D. J. L., 1983, Bending patterns of Chlamydomonas flagella. I. Wild-type bending patterns, Cell Motil., 3:131.PubMedCrossRefGoogle Scholar
  9. Calkins, J., Colley, E., and Wheeler, J., 1987, Spectral dependence of some UV-B and UV-C responses of Tetrahymena pyriformis irradiated with dye laser generated UV, Photochem. Photobiol., 45:389.PubMedCrossRefGoogle Scholar
  10. Clayton, L., Pogson, C. I., and Gull, K., 1983, Ultrastructural and biochemcial characterization of Physarum polycephalum myxamoebae, Protoplasma 118:181.CrossRefGoogle Scholar
  11. Cohn, F., 1866, Über die Gesetze der Bewegung der Mikroskopischen Pflanzen und Thiere unter Einfluß des Lichtes, Hedwigia, 5:161.Google Scholar
  12. Colombetti, G., 1990, New trends in photobiology - photomotile responses in ciliated protozoa, J. Photochem. Photobiol. B., 4:243.CrossRefGoogle Scholar
  13. Colombetti, G., Lenci, F., and Song, P.-S., 1982, Effects of K+ and Ca2+ ions on motility and photosensory responses of Stentor coeruleus, Photochem. Photobiol., 36:609.CrossRefGoogle Scholar
  14. Cronkite, D., and Van Den Brink, S., 1981, The role of oxygen and light in guiding photoaccumulation in the Paramecium bursaria-Chlorella symbiosis, J. Exp. Zool., 217:171.CrossRefGoogle Scholar
  15. Dee, J., 1975, Slime moulds in biological research, Sci. Prog. Oxford,62:523.Google Scholar
  16. Dembowski, J., 1950, On the conditioned reactions of Paramecium caudatum towards light, Acta Biol Exp. 15:17.Google Scholar
  17. Diehn, B., 1969, Action spectra of the phototactic responses in Euglena, Biochim. Biophys. Acta. 177:136.PubMedCrossRefGoogle Scholar
  18. Diehn, B., 1979, Photic responses and sensory transduction in motile protists, in:“Handbook of Sensory Physiology,” VII/6a, Autrum, H., ed., Springer-Verlag, Berlin, pp. 23.Google Scholar
  19. Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., and Nultsch, W., 1977, Terminology of behavioral responses in microorganisms, Photochem. Photobiol., 26:559.CrossRefGoogle Scholar
  20. Diehn, B., Fonseca, J. R., and Jahn, T. L., 1975, High speed cinematography of the direct photophobic response of Euglena and the mechanism of negative phototaxis, J. Protozool.,22:492.Google Scholar
  21. Dolle, R., Pfau, J., and Nultsch, W., 1987, Role of calcium ions in motility and phototaxis of Chlamydomonas reinhardtii, J. Plant Physiol., 126:467.CrossRefGoogle Scholar
  22. Doughty, M. J. 1990a, A kinetic analysis of a step-up photosensory response of the ciliate, Stentor coeruleus, Can. J. Microbiol., 36:414.CrossRefGoogle Scholar
  23. Doughty, M. J. 1990b, A kinetic analysis of a step-up photophobic response of the flagellate Euglena gracilis in culture medium, J. Photochem. Photobiol. B., in press.Google Scholar
  24. Doughty, M. J., and Diehn, B., 1979, Photosensory transduction in the flagellated alga, Euglena gracilis. I. Action of divalent cations, calcium antagonists and calcium ionophore on motility and photobehavior, Biochim. Biophys. Acta 588:148.PubMedCrossRefGoogle Scholar
  25. Doughty, M. J., and Diehn, B., 1980, Flavins as photoreceptor pigments for behavioral responses in motile microorganisms, especially in the flagellated alga, Euglena sp., in:“Structure and Bonding,” Dunitz, J. D., Goodenough, J. B., Hemmerich, P., Ibers, J. A., Jorgensen, C. K., Neilands, J. B., Reinen, D., Williams, R. J. P., eds., Springer-Verlag, Berlin, Heidelberg, New York, 41:45.Google Scholar
  26. Doughty, M. J., and B. Diehn, 1982, Photosensory transduction in the flagellated alga, Euglena gracilis. III. Induction of calcium-dependent responses by monovalent cation ionophores, Biochim. Biophys. Acta 682:32.CrossRefGoogle Scholar
  27. Doughty, M. J., and Diehn, B., 1983, Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long-term effects of ions and pH on the expression of step-down photobehavior, Arch. Microbiol., 134:204.CrossRefGoogle Scholar
  28. Doughty, M. J., and Diehn, B., 1984, Anion sensitivity of motility and step-down photophobic responses of Euglena gracilis, Arch. Microbiol., 138:329.CrossRefGoogle Scholar
  29. Doughty, M. J., and Dryl, S., 1981, Control of ciliary activity in Paramecium, An analysis of chemosensory transduction in a eukaryotic unicellular organism, Progr. Neurobiol., 16:1.CrossRefGoogle Scholar
  30. Doughty, M. J., Grieser, R., and Diehn, B., 1980, Photosensory transduction in the flagellated alga, Euglena gracilis. II. Evidence that blue-light effects alternation in Na+/K+ permeability of the photoreceptor membrane, Biochim. Biophys. Acta 602:10.PubMedCrossRefGoogle Scholar
  31. Ekelund, N., and Häder, D.-P., 1988, Photomovement and photobleaching in two Gyrodinium species. Plant Cell Physiol, 29:1109.Google Scholar
  32. Feinleib, M. E. H., and Curry, G. M., 1971, The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas, Physiol. Plant., 25:346.CrossRefGoogle Scholar
  33. Fenchel, T., 1987, “Ecology of Protozoa,” Science Tech Publ., Madison, WI.Google Scholar
  34. Fenchel, T., and Finlay, B. J., 1984, Geotaxis in the ciliated protozoan, Loxodes, J. Exp. Biol., 110:17.Google Scholar
  35. Fenchel, T., and Finlay, B. J., 1986, Photobehavior of the ciliated protozoan Loxodes:tactic, transient and kinetic responses in the presence and absence of oxygen, J. Protozool., 33:139.Google Scholar
  36. Finlay, T., and Fenchel, B. J., 1986, Photosensitivity in the ciliated protozoan, Loxodes: pigment granules, absorption and action spectra, blue light perception and ecological significance, J. Protozool., 33:534.Google Scholar
  37. Forward, R. B., 1973, Photoaxis in a dinoflagellate: action spectra as evidence for a two-pigment system, Planta 111:167.CrossRefGoogle Scholar
  38. Forward, R. B., 1974, Phototaxis by the dinoflagellate, Gymnodinium splendens Lebour, J. Protozool., 21:312.PubMedGoogle Scholar
  39. Forward, R. B., 1975, Dinoflagellate phototaxis: pigment systems and circadian rhythm as related to diurnal migration, in: “Physiological Ecology of Esturarine Organisms,” Vernberg, F., ed., S. Carolina Press, Columbia, SC, pp. 367.Google Scholar
  40. Forward, R. B., 1977, Effects of neurochemicals upon a dinoflagellate photoresponse, J. Protozool.,24:401.PubMedGoogle Scholar
  41. Foster, K. W., and Smyth, R. D., 1980, Light antennae in phototactic algae, Microbiol. Rev., 44:572.PubMedGoogle Scholar
  42. Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote, Chlamydomonas, Nature, Lond., 311:756.CrossRefGoogle Scholar
  43. Giese, A. C, and Leighton, P. A., 1935, Quantitative studies on the photolethal effects of quartz ultraviolet radiation upon Paramecium, J. Gen. Physiol., 18:557.PubMedCrossRefGoogle Scholar
  44. Gualteri, P., Passarelli, V., and Barsanti, L., 1989, In vivo microscpectrophotometric investigation of Blepharisma japonicum, J. Photochem. Photobiol. B., 3, 379.CrossRefGoogle Scholar
  45. Häder, D.-P., 1979, Photomovement, in:“Encyclopedia of Plant Physiology,” New Series, vol. 7, Physiology of Movements, Haupt, W., and Feinleib, M. E., eds., Springer-Verlag, Berlin, pp. 267.Google Scholar
  46. Häder, D.-P., 1986, Effects of solar and artificial UV irradiation on motility and phototaxis of the flagellate, Euglena gracilis, Photochem. Photobiol., 44:651.CrossRefGoogle Scholar
  47. Häder, D.-P., 1988, Ecological consequences of photomovement in microorganisms. J. Photochem. Photobiol. B. 1:385.CrossRefGoogle Scholar
  48. Häder, D.-P., Claviez, M., Merkel, R., and Gerisch, G., 1983, Responses of Dictyostelium discoideum to local stimulation by light, Cell Biol. Int. Rep.,7:611.PubMedCrossRefGoogle Scholar
  49. Häder, D.-P., Colombetti, G., Lenci, F., and Quaglia, M., 1981, Phototaxis in the flagellated, Euglena gracilis and Ochromonas danica. Arch. Microbiol., 130:78 (and ref. cit.).Google Scholar
  50. Häder, D.-P., and Griebenow, K., Orientation of the green flagellate, Euglena gracilis, in a vertical column of water, FEMS Microbiol. Ecol., 53:159.Google Scholar
  51. Häder, D.-P, and Häder, M. A., 1988, Ultraviolet-B inhibition of motility in green and dark-bleached Euglena gracilis, Curr. Microbiol., 17:215.CrossRefGoogle Scholar
  52. Häder, D.-P., and Häder, M., 1989, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Cryptomonas, Botanica Acta 102:236.Google Scholar
  53. Häder, D.-P., Häder, M., Liu, S-M., and Ullrich, W., 1990, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Peridinium, Biosystems 23:335.PubMedCrossRefGoogle Scholar
  54. Häder, D.-P., Lebert, M., and DiLena, M. R., 1986, New evidence for the mechanism for phototactic orientation of Euglena gracilis, Curr. Microbiol., 14:157.CrossRefGoogle Scholar
  55. Häder, D.-P., Lebert, M., and DiLena, M. R., 1987, Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis, Plant Physiol., 6:169.Google Scholar
  56. Häder, D.-P., and Poff, K. L., 1979a, Photodispersal from light traps by amoebae of Dictyostelium discoideum, Exptl. Mycol., 3:121.CrossRefGoogle Scholar
  57. Häder, D. P., and Poff, K. L., 1979b, Light-induced accumulations of Dictyostelium amoebae, Photochem. Photobiol., 29:1157. CrossRefGoogle Scholar
  58. Häder, D.-P., and Poff, K. L., 1979c, Inhibition of aggregation by light in the cellular slime mould, Dictyostelium discoideum, Arch. Microbiol., 123:281.CrossRefGoogle Scholar
  59. Häder, D.-P., and Poff, K. L., 1980, Effects of ionophores and TPMP+ on light-induced responses in Dictyostelium discoideum, Arch. Microbiol., 126:97.CrossRefGoogle Scholar
  60. Häder, D.-P., Rhiel, E., and Wehrmeyer, W., 1987, Phototaxis in the marine flagellate Cryptomonas maculate, J. Photochem. Photobiol. B., 1:115.CrossRefGoogle Scholar
  61. Häder, D.-P., Watanabe, M., and Furuya, M., 1988, Multiple photoreceptors in phototaxis of Dictyostelium amoebae, Protoplasma Suppl. 1:155.CrossRefGoogle Scholar
  62. Halldal, P., 1958, Action spectra of phototaxis and related problems in Volvocales, Ulva gametes and Di-nophyceae, Physiol. Plant. 11:118.CrossRefGoogle Scholar
  63. Halldal, P., 1959, Factors affecting light response in phototactic algae, Physiol. Plant. 12:742.CrossRefGoogle Scholar
  64. Hand, W. G., and Schmidt, J., 1975, Phototactic orientation by the marine dinoflagellate, Gyrodinium dorsum Kofoid. II. Flagellar activity and overall response mechanism, J. Protozool., 22:494.Google Scholar
  65. Harrington, H. R., and Learning, E., 1990, The reactions of Amoeba to light of different colors, Am. J. Physiol, 3:9.Google Scholar
  66. Hegemann, P., and Bruck, B., 1989, Light-induced stop response in Chlamydomonas reinhardtii: occurrence and adaptation phenomena, Cell Motil. Cytoskel., 14:501.CrossRefGoogle Scholar
  67. Hegemann, P., and Marwan, W., 1988, Single photons are sufficient to trigger movement response in Chlamydomonas reinhardtii, Photochem. Photobiol, 48:99.CrossRefGoogle Scholar
  68. Hildebrand, E., 1972, Avoiding reaction and receptor mechanism in protozoa, Acta Protozool, 11:361.Google Scholar
  69. Hildebrand, E., 1975, Bedeutung der Konkurrenz zwischen Calcium und anderen Kationen für die Steuerung der Leitfähigkeit sensorischer Membranen, Verh. Dtsch. Zool. Ges., 24:62.Google Scholar
  70. Holwill, M. E. J., 1966, The motion of Euglena viridis: the role of flagella, J. Exp. Biol., 44:579.PubMedGoogle Scholar
  71. Hoops, J. H., and Witman, G. B., 1985, Basal bodies and associated structures are not requires for normal flagellar motion or phototaxis in the green alga, Chlorogonium elongatum, J. Cell Biol, 100:297.PubMedCrossRefGoogle Scholar
  72. Inaba, F., Nakamura, R., and Yamaguchi, S., 1979, An electron-microscopic study on the pigment granules of Blepharisma, Cytologia (Tokyo) 23:72.Google Scholar
  73. Iwatsuki, K., and Naitoh, Y., 1981, The role of symbiotic Chlorella in photoresponses of Paramecium bursaria, Proc. Jpn. Acad. Ser. B., 57:318.CrossRefGoogle Scholar
  74. Iwatsuki, K., and Naitoh, Y., 1982, Photoresponses in colorless Paramecium, Experentia, 38:1453.CrossRefGoogle Scholar
  75. Iwatsuki, K., and Song, P-S., 1989, The ratio of extracellular Ca2+ to K+ ions affects the photoresponses in Stentor coeruleus, Comp. Biochem. Physiol, 92A:101.CrossRefGoogle Scholar
  76. Jacobson, D. N., 1979, The role of regulation of cell speed in the behavior of Physarum polycephalum amoebae, Exp. Cell Res., 122:219.PubMedCrossRefGoogle Scholar
  77. James, T. W., 1987, Photomechanical transduction in Amoeba proteus: an action spectrum, J. Photochem. Photobiol. B., 1:203.CrossRefGoogle Scholar
  78. Jennings, H. S., 1904, Reactions to light in ciliates and flagellates, in: “Contributions to the Study of the Behavior of Lower Organisms,” Carnegie Institute, Washington, DC, pp. 31.Google Scholar
  79. Jensen, D. D., 1959, A theory of the behavior of Paramecium aurelia and behavioral effects of feeding, fision and UV microbeam irradiation, Behavior, 15:82.CrossRefGoogle Scholar
  80. Jirovec, O., 1934, Der Einfluß von ultravioletten Strahlen auf grüne und farblose Stämme von Euglena gracilis, Protoplasma, 21:577.CrossRefGoogle Scholar
  81. Kaneda, H., and Furuya, M., 1986, Temporal changes in swimming direction during the phototactic orientation in cells of Cryptomonas sp., Plant Cell Physiol, 27:265.Google Scholar
  82. Kaneda, H., and Furuya, M., 1987, Effect of calcium ions on phototactic orientation of individual Cryptomonas cells, Plant Sci., 48:31.CrossRefGoogle Scholar
  83. Kaufman, L. S., and Lyman, H., 1982, A 600 nm receptor in Euglena gracilis: its role in chlorophyll accumulation, Plant Sci. Lett., 26:293.CrossRefGoogle Scholar
  84. Kivik, P. A., and Walne, P. L., 1983, Algal photosensory apparatus probably represent multiple parallel evolutions. BioSystems 16:31.CrossRefGoogle Scholar
  85. Kohidal, L., Darvas, Z., and Csaba, G., 1987, The effect of varying illumination on imprinting of Tetrahymena by insulin, Acta Microbiol. Hung., 34:179.Google Scholar
  86. Kraml, M., and Marwan, W., 1983, Photomovement respones of the heterotrichous eiliate, Blepharisma japonicum, Photochem. Photobiol., 37:313.CrossRefGoogle Scholar
  87. Lankester, E. R., 1873, Blue stentorin - the coloring matter of Stentor coeruleus, Quart. J. Microscop. Sci., 13:139.Google Scholar
  88. Laurens, H., and Hooker, H. D., 1920, Studies on the relative physiological value of spectral lights. II. The sensibility of Volvox to wavelengths of equal energy content, J. Exp. Zool., 30:345.CrossRefGoogle Scholar
  89. Lee, J. J., Hutner, S. H., and Bovee, E. C., 1985, “An Illustrated Guide to Protozoa,” Society Protozoologists, Lawrence, KS.Google Scholar
  90. Lenci, F., Häder, D.-P., and Colombetti, G., 1984, Photosensory responses in freely motile microorganisms, in: “Membranes and Sensory Transduction,” Colombetti, G., and Lenci, F., eds., Plenum Press, New York, pp. 199.CrossRefGoogle Scholar
  91. Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A., 1978, Photoreceptor electrical potential in the phototaxis of the alga, Haematococcus pluvialis, Nature, Lond., 271:476.CrossRefGoogle Scholar
  92. Liu, S-M., Häder, D.-P, and Ulrich, W., 1990. Photoorientation in the dinoflagellate, Peridinium gatunense Nygaard, FEMS Microbiol. Lett., 73:91.CrossRefGoogle Scholar
  93. Mast, S. O., 1910, Reactions in Amoeba to light, J. Exp. Zool, 9:265.CrossRefGoogle Scholar
  94. Mast, S. O., 1941, Motor responses in unicellular organisms, in: “Protozoa in Biological Research,” Calkins, G. N., and Summers, F. M., Eds., Columbia Univ. Press, New York, pp. 271.Google Scholar
  95. Mast, S. O., and Hulpieu, H. R., 1930, Variation in responses to light in Amoeba proteus with special reference to the effects of salts and hydrogen ion concentration, Protoplasma, 11:412.CrossRefGoogle Scholar
  96. Mast, S. O., and Stahler, N., 1937, The relation between luminous intensity, adaptation to light and the rate of locomotion in Amoeba proteus (Leidy), Biol. Bull., 73:126.CrossRefGoogle Scholar
  97. Matsuoka, T., 1983, Distribution of photoreceptors inducing ciliary reversal and swimming acceleration in Blepharisma japonicum, J. Exp. Zool, 225:337.CrossRefGoogle Scholar
  98. Matsuoka, K., and Nakaoka, Y., 1988, Photoreceptor potential causing phototaxis of Paramecium bursaria, J. Exp. Biol, 137:477.Google Scholar
  99. Mergenhagen, D., 1980, Circadian rhythms in unicellular organisms, Curr. Topics Microbiol. Immunol, 90:123.CrossRefGoogle Scholar
  100. Merton, H., 1935, Zwangsreaktionen bei Stentor als Folge bestimmter Salzwirkungen, Biol. Z., 55:268.Google Scholar
  101. Meyer, R., and Hildebrand, E., 1988, Phototaxis of Euglena gracilis at low external calcium concentrations, J. Photochem. Photobiol. B., 2:443.CrossRefGoogle Scholar
  102. Mikolajczyk, E., 1986, Na+/K+ transport and photosensitivity of the colorless flagellate, Peranema trichophorum (Euglenida), Photochem. Photobiol, 43:455.CrossRefGoogle Scholar
  103. Mikolajczyk, E., and Walne, P. L., 1990, Photomotile response and ultrasturcture of the euglenoid flagellate, Astasia fritschii, J. Photochem. Photobiol. B., 6:275.CrossRefGoogle Scholar
  104. Moller, K. M., 1962, On the nature of stentorin, C. R. Trav. Lab. Karlsberg, 32:471.Google Scholar
  105. Morel-Laurens, N. M., and Feinleib, M. E., 1983, Photomovement in an “eyeless” mutant of Chlamydomonas, Photochem. Photobiol, 37:189.CrossRefGoogle Scholar
  106. Nakajima, K., and Nakaoka, Y., 1989, Circadian change of photosensitvity of Paramecium bursaria, J. Exp. Biol, 144:43.Google Scholar
  107. Niess, D., Reisser, W., and Wiessner, W., 1982, Photobehavior of Paramecium bursaria infected with different symbiotic and aposymbiotic species of Chlorella, Planta, 156:475.CrossRefGoogle Scholar
  108. Nultsch, W., 1983, The photocontrol of movement in Chlamydomonas, in: “The Biology of Photoreception,” Cosens, D. J., and Vincent-Price, D., eds., Soc. Exptl. Biol., Cambridge, UK, pp. 521.Google Scholar
  109. Nultsch, W., Pfau, J., and Dolle, R., 1986, Effects of calcium channel blockers on phototaxis and motility of Chlamydomonas reinhardtii, Arch. Microbiol, 144:393.CrossRefGoogle Scholar
  110. Okumura, H., 1963, Response to light in Paramecium, J. Fac. Sci. Hokkaido Univ. Ser. VI. Zool, 15:225.Google Scholar
  111. Oltmans, F., 1917, Uber Phototaxis, Z. Botanik, 9:257.Google Scholar
  112. Omedo, P., 1980, The photoreceptive apparatus of flagellated algal cells: comparative morphology and some hypotheses on functioning, in: “Photoreception and Sensory Transduction in Aneural Organisms,” Lenci, F., and Colombetti, G., eds., Plennun Press, New York, pp. 127.Google Scholar
  113. Opas, M., 1975, Studies on the locomotion of Amoeba proteus. I. The response to hydrogen ion concentration of the medium, Acta Protozool., 13:285.Google Scholar
  114. Piccinni, E., and Omodeo, P., 1975, Photoreceptors and phototactic programs in protista, Boll. Zool., 42:57.CrossRefGoogle Scholar
  115. Pietrowica-Kosmynka, D., 1971, Chemotactic effects of cations and pH on Stentor coeruleus, Acta Protozool, 9:235.Google Scholar
  116. Poff, K. L., Loomis, W. F., and Butler, W. L., 1974, Isolation and purification of the photoreceptor pigment associated with phototaxis in Dictyosteliuum discoideum, Proc. Natl. Acad. Sci. USA, 249:2164.Google Scholar
  117. Puytorac, P., and Njine, T., 1970, Sur l’ultrastructure des Loxodes (cilies holotriches), Protistologica, 6:427.Google Scholar
  118. Quinlan, R. A., Roobol, A., Pogson, C. I., and Gull, K., 1981, A correlation between in vivo and in vitro effects of the microtubule inhibitors colchicine, parbendazole and nocodazole on the myamoebae of Physarum pofycephalum, J. Gen. Microbiol., 122:1.PubMedGoogle Scholar
  119. Reisser, W., and Häder, D.-P., 1984, Role of endosymbiotic algae in photokinesis and photophobic responses of ciliates, Photochem. Photobiol., 39:673.CrossRefGoogle Scholar
  120. Rhiel, E., Hader, D.-P., and Wehrmeyer, W., 1988, Photoorientation in a freshwater Cryptomonas species, J. Photochem. Photobiol. B., 2:123.CrossRefGoogle Scholar
  121. Rokoczy, L., Majcherczyk, A., and Huttermann, A., 1986, Changes in plasmodial pigments of Physarum polycephalum in relation to the age of the culture medium, Can. J. Microbiol., 33:217.CrossRefGoogle Scholar
  122. Ruben, L., Lageson, J., Hyzy, B., and Hooper, A. B., 1982, Growth cycle-dependent overproduction and accumulation of protoporphyrin IX in Tetrahymena: effect of heavy metals. J. Protozool., 29:233.PubMedGoogle Scholar
  123. Rüffer, U., and Nultsch, W., 1985, High-speed cinematographic analysis of the movement of Chlamydomonas, Cell Motil, 5:251.CrossRefGoogle Scholar
  124. Sakaguchi, H., 1979, Effect of external ionic environments on phototaxis of Volvox carteri, Plant Cell. Physiol., 20:1643.Google Scholar
  125. Sakaguchi, H., and Iwasa, K., 1979, Two photophobic responses in Volvox carteri, Plant Cell Physiol., 20:909.Google Scholar
  126. Scevoli, P., Brisi, F., Colombetti, G., Ghetti, F., Lenci, F., and Passarelli, V., 1987, Photomotile responses of Blepharisma japonicum. I. Action spectra determination and time-resolves fluorescence of photoreceptor pigments. J. Photochem. Photobiol. B., 1:75.CrossRefGoogle Scholar
  127. Schaeffer, A. A., 1917, Reactions of Amoeba to light and the effect of light on feeding, Biol. Bull., 32:45.CrossRefGoogle Scholar
  128. Schaeffer, A. A. 1920, “Amoeboid Movement,” Princeton University Press, New Haven, CT.Google Scholar
  129. Schmidt, J. A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii, Nature, Lond., 262:713.CrossRefGoogle Scholar
  130. Schmidt, W., Thomson, K., and Butler, W. L., 1977, Cytochrome b in plasma membrane-enriched fractions from several photoresponsive organisms, Photochem. Photobiol. 26:407.PubMedCrossRefGoogle Scholar
  131. Seshachar, B. R., and Rao, A. V. S. P., 1959, Observations on the pigment from an Indian species of Blepharisma (ciliata; protozoa), J. Sci. Industri. Res., 18C:76.Google Scholar
  132. Sevenants, M. R., 1965, Pigments of Blepharisma undulans compared with hypericin, J. Protozool., 12:240.PubMedGoogle Scholar
  133. Shettles, L. B., 1937, Response to light in Peranema trichophorum with special reference to dark-adaptation and light-adaptation, J. Exp. Zool., 77:215.CrossRefGoogle Scholar
  134. Smyth, R. D., and Berg, H. C, 1982, Change in flagellar beat frequency of Chlamydomonas in response to light, Cell. Motil. (suppl.) 1:211.CrossRefGoogle Scholar
  135. Song, P-S., 1982, Photosensory transduction in Stentor coeruleus and related organisms, Biochim. Biophys. Acta. 639:1.Google Scholar
  136. Song, P-S., Tapley, K. J., and Berlin, J. D., The photoreceptor in Stentor coeruleus, in: “The Biology of Photoreception,” Cosens, D. J., and Vince-Price, D., eds., Soc. Exptl. Biol., Cambridge, UK.Google Scholar
  137. Suzaki, T., and Williamson, R. E., 1983, Photoresponse of a colorless euglenoid flagellate, Astasia longa, Plant Sci. Lett, 32:101.CrossRefGoogle Scholar
  138. Teta, L. A., Ellsaesser, C. F., and Hanna, M. H., 1983, The role of light and an aggregation-stimulating factor suring aggregation of Polysphondylium violaceum, J. Gen. Microbiol., 129:167.Google Scholar
  139. Tollin, G., 1969, Energy transduction in algal phototaxis, Curr. Topics Bioenerget., 3:417.Google Scholar
  140. Uemetsu-Kaneda, H., and Furuya, M., 1982, Effects of viscosity on phototactic movement and period of cell rotation in Cryptomonas sp., Physiol. Plant, 56:194.CrossRefGoogle Scholar
  141. Usuki, I., and Hino, A., 1987, Hemoglobin content in various stocks of different species of the Paramecium aurelia group, Cell. Molec. Biol., 33:601.Google Scholar
  142. Wager, H., 1911, On the effect of gravity upon the movements and aggregations of Euglena viridis Ehrb. and other microorganisms, Phil. Trans. Roy. Soc. Lond., Ser. B. 201:333.CrossRefGoogle Scholar
  143. Walker, E. B., Lee, T. Y., and Song, P-S., 1979, Spectroscopic characterization of the Stentor photoreceptor, Biochim. Biophys. Acta, 587:129.PubMedCrossRefGoogle Scholar
  144. Watanabe, M., and Furuya, M., 1974, Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sp., Plant Cell Physiol., 15:413.Google Scholar
  145. Weisz, P. B., 1950, On the mitochondrial nature of the pigmented granules in Stentor and Blepharisma, J. Morphol., 86:177.CrossRefGoogle Scholar
  146. Willie, J. W., and Ehret, C. F., 1968, Light synchronization of an endogenous circadian rhythm of cell division in Tetrahymena, J. Protozool., 15:785.Google Scholar
  147. Wood, D. C, 1976, Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleus, Photochem. Photobiol., 24:261.PubMedCrossRefGoogle Scholar
  148. Worrest, R. C, and Hader, D.-P., 1989, Effects of stratospheric ozone depletion on marine microorganisms. Environm. Conservat., 16:261.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael J. Doughty
    • 1
  1. 1.School of OptometryUniversity of WaterlooWaterlooCanada

Personalised recommendations