Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 211))

Abstract

The subkingdom of the protozoa contains many different types of single celled organisms and some colonial (aggregate) forms that have been of interest to those interested in photomovement. In an older review by Bendix (1960), an evaluation of the photomovements of these different organisms, as reported by various researchers, was conducted by making reference to the orders to which each of the protozoa belonged. Revisions have been made both in the terminology (or naming of the protozoa) and also in the systematic grouping for classification (Lee et al., 1985). A re-evaluation of photomovements in the protozoa based on a systematics approach will hopefully prove useful if for no other reason than being considered as an update. Emphasis will be placed on the grouping of the protozoa by their subphyla, classes, (sub)orders. Within such a scheme, the current status of knowledge within each group will be briefly reviewed by highlighting aspects of the photochemical basis for the responses, the information available on possible transduction schemes and to compare the characteristics of the overall photomovements. Any order or genus where photobehavior has not obviously been reported has been omitted for convenience but noted in summary at the end. In this systematics approach, all of the subclass and suborder details are not included since there does not seem to be enough information at this time to warrant a systematics evaluation at a level beyond the individual (sub)orders. Full details of the classifications can be found in the recent text published by Lee, Hutner and Bovee (1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamich, M., Lais, P. C., and Sweeney, B. M., 1976, In vivo evidence for a cireadian rhythm in membranes of Gonyaulax, Nature, Lond., 261:583.

    Article  CAS  Google Scholar 

  • Arnal, F., Reeer, G., and Hanna, 1984, Photostimulation of aggregation in the slime mould Polysphondylium violaceum, Photochem. PhotobioL, 40:519.

    Article  CAS  Google Scholar 

  • Barcello, J. A., and Calkins, J., 1979, Positioning of aquatic microorganisms in response to visible light and simulated solar UV-B irradiation, Photochem. Photobiol., 29:75.

    Article  Google Scholar 

  • Barghigiani, C., Colombetti, G., Franchini, B., and Lenci, F., 1979, Photobehavior of Euglena gracilis: action spectrum for the step-down photophobic responses of individual cells, Photochem. Photobiol., 29:1015.

    Article  Google Scholar 

  • Bendix, S. W., 1960, Phototaxis, Botan. Rev., 26:145.

    Article  Google Scholar 

  • Beneditti, P. A., and Checcucci, A., 1975, Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis, Plant Sci. Lett., 4:47.

    Article  Google Scholar 

  • Bouck, G. B., 1971, The structure, origin, isolation and composition of the tubular mastigonemes of the Ochromonas flagellum, J. Cell Biol., 50:362.

    Article  PubMed  CAS  Google Scholar 

  • Brokaw, C. J., and Luck, D. J. L., 1983, Bending patterns of Chlamydomonas flagella. I. Wild-type bending patterns, Cell Motil., 3:131.

    Article  PubMed  CAS  Google Scholar 

  • Calkins, J., Colley, E., and Wheeler, J., 1987, Spectral dependence of some UV-B and UV-C responses of Tetrahymena pyriformis irradiated with dye laser generated UV, Photochem. Photobiol., 45:389.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, L., Pogson, C. I., and Gull, K., 1983, Ultrastructural and biochemcial characterization of Physarum polycephalum myxamoebae, Protoplasma 118:181.

    Article  CAS  Google Scholar 

  • Cohn, F., 1866, Über die Gesetze der Bewegung der Mikroskopischen Pflanzen und Thiere unter Einfluß des Lichtes, Hedwigia, 5:161.

    Google Scholar 

  • Colombetti, G., 1990, New trends in photobiology - photomotile responses in ciliated protozoa, J. Photochem. Photobiol. B., 4:243.

    Article  Google Scholar 

  • Colombetti, G., Lenci, F., and Song, P.-S., 1982, Effects of K+ and Ca2+ ions on motility and photosensory responses of Stentor coeruleus, Photochem. Photobiol., 36:609.

    Article  CAS  Google Scholar 

  • Cronkite, D., and Van Den Brink, S., 1981, The role of oxygen and light in guiding photoaccumulation in the Paramecium bursaria-Chlorella symbiosis, J. Exp. Zool., 217:171.

    Article  CAS  Google Scholar 

  • Dee, J., 1975, Slime moulds in biological research, Sci. Prog. Oxford,62:523.

    CAS  Google Scholar 

  • Dembowski, J., 1950, On the conditioned reactions of Paramecium caudatum towards light, Acta Biol Exp. 15:17.

    Google Scholar 

  • Diehn, B., 1969, Action spectra of the phototactic responses in Euglena, Biochim. Biophys. Acta. 177:136.

    Article  PubMed  CAS  Google Scholar 

  • Diehn, B., 1979, Photic responses and sensory transduction in motile protists, in:“Handbook of Sensory Physiology,” VII/6a, Autrum, H., ed., Springer-Verlag, Berlin, pp. 23.

    Google Scholar 

  • Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., and Nultsch, W., 1977, Terminology of behavioral responses in microorganisms, Photochem. Photobiol., 26:559.

    Article  Google Scholar 

  • Diehn, B., Fonseca, J. R., and Jahn, T. L., 1975, High speed cinematography of the direct photophobic response of Euglena and the mechanism of negative phototaxis, J. Protozool.,22:492.

    Google Scholar 

  • Dolle, R., Pfau, J., and Nultsch, W., 1987, Role of calcium ions in motility and phototaxis of Chlamydomonas reinhardtii, J. Plant Physiol., 126:467.

    Article  CAS  Google Scholar 

  • Doughty, M. J. 1990a, A kinetic analysis of a step-up photosensory response of the ciliate, Stentor coeruleus, Can. J. Microbiol., 36:414.

    Article  Google Scholar 

  • Doughty, M. J. 1990b, A kinetic analysis of a step-up photophobic response of the flagellate Euglena gracilis in culture medium, J. Photochem. Photobiol. B., in press.

    Google Scholar 

  • Doughty, M. J., and Diehn, B., 1979, Photosensory transduction in the flagellated alga, Euglena gracilis. I. Action of divalent cations, calcium antagonists and calcium ionophore on motility and photobehavior, Biochim. Biophys. Acta 588:148.

    Article  PubMed  CAS  Google Scholar 

  • Doughty, M. J., and Diehn, B., 1980, Flavins as photoreceptor pigments for behavioral responses in motile microorganisms, especially in the flagellated alga, Euglena sp., in:“Structure and Bonding,” Dunitz, J. D., Goodenough, J. B., Hemmerich, P., Ibers, J. A., Jorgensen, C. K., Neilands, J. B., Reinen, D., Williams, R. J. P., eds., Springer-Verlag, Berlin, Heidelberg, New York, 41:45.

    Google Scholar 

  • Doughty, M. J., and B. Diehn, 1982, Photosensory transduction in the flagellated alga, Euglena gracilis. III. Induction of calcium-dependent responses by monovalent cation ionophores, Biochim. Biophys. Acta 682:32.

    Article  CAS  Google Scholar 

  • Doughty, M. J., and Diehn, B., 1983, Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long-term effects of ions and pH on the expression of step-down photobehavior, Arch. Microbiol., 134:204.

    Article  CAS  Google Scholar 

  • Doughty, M. J., and Diehn, B., 1984, Anion sensitivity of motility and step-down photophobic responses of Euglena gracilis, Arch. Microbiol., 138:329.

    Article  CAS  Google Scholar 

  • Doughty, M. J., and Dryl, S., 1981, Control of ciliary activity in Paramecium, An analysis of chemosensory transduction in a eukaryotic unicellular organism, Progr. Neurobiol., 16:1.

    Article  CAS  Google Scholar 

  • Doughty, M. J., Grieser, R., and Diehn, B., 1980, Photosensory transduction in the flagellated alga, Euglena gracilis. II. Evidence that blue-light effects alternation in Na+/K+ permeability of the photoreceptor membrane, Biochim. Biophys. Acta 602:10.

    Article  PubMed  CAS  Google Scholar 

  • Ekelund, N., and Häder, D.-P., 1988, Photomovement and photobleaching in two Gyrodinium species. Plant Cell Physiol, 29:1109.

    Google Scholar 

  • Feinleib, M. E. H., and Curry, G. M., 1971, The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas, Physiol. Plant., 25:346.

    Article  Google Scholar 

  • Fenchel, T., 1987, “Ecology of Protozoa,” Science Tech Publ., Madison, WI.

    Google Scholar 

  • Fenchel, T., and Finlay, B. J., 1984, Geotaxis in the ciliated protozoan, Loxodes, J. Exp. Biol., 110:17.

    Google Scholar 

  • Fenchel, T., and Finlay, B. J., 1986, Photobehavior of the ciliated protozoan Loxodes:tactic, transient and kinetic responses in the presence and absence of oxygen, J. Protozool., 33:139.

    CAS  Google Scholar 

  • Finlay, T., and Fenchel, B. J., 1986, Photosensitivity in the ciliated protozoan, Loxodes: pigment granules, absorption and action spectra, blue light perception and ecological significance, J. Protozool., 33:534.

    CAS  Google Scholar 

  • Forward, R. B., 1973, Photoaxis in a dinoflagellate: action spectra as evidence for a two-pigment system, Planta 111:167.

    Article  CAS  Google Scholar 

  • Forward, R. B., 1974, Phototaxis by the dinoflagellate, Gymnodinium splendens Lebour, J. Protozool., 21:312.

    PubMed  Google Scholar 

  • Forward, R. B., 1975, Dinoflagellate phototaxis: pigment systems and circadian rhythm as related to diurnal migration, in: “Physiological Ecology of Esturarine Organisms,” Vernberg, F., ed., S. Carolina Press, Columbia, SC, pp. 367.

    Google Scholar 

  • Forward, R. B., 1977, Effects of neurochemicals upon a dinoflagellate photoresponse, J. Protozool.,24:401.

    PubMed  CAS  Google Scholar 

  • Foster, K. W., and Smyth, R. D., 1980, Light antennae in phototactic algae, Microbiol. Rev., 44:572.

    PubMed  CAS  Google Scholar 

  • Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote, Chlamydomonas, Nature, Lond., 311:756.

    Article  CAS  Google Scholar 

  • Giese, A. C, and Leighton, P. A., 1935, Quantitative studies on the photolethal effects of quartz ultraviolet radiation upon Paramecium, J. Gen. Physiol., 18:557.

    Article  PubMed  CAS  Google Scholar 

  • Gualteri, P., Passarelli, V., and Barsanti, L., 1989, In vivo microscpectrophotometric investigation of Blepharisma japonicum, J. Photochem. Photobiol. B., 3, 379.

    Article  Google Scholar 

  • Häder, D.-P., 1979, Photomovement, in:“Encyclopedia of Plant Physiology,” New Series, vol. 7, Physiology of Movements, Haupt, W., and Feinleib, M. E., eds., Springer-Verlag, Berlin, pp. 267.

    Google Scholar 

  • Häder, D.-P., 1986, Effects of solar and artificial UV irradiation on motility and phototaxis of the flagellate, Euglena gracilis, Photochem. Photobiol., 44:651.

    Article  Google Scholar 

  • Häder, D.-P., 1988, Ecological consequences of photomovement in microorganisms. J. Photochem. Photobiol. B. 1:385.

    Article  Google Scholar 

  • Häder, D.-P., Claviez, M., Merkel, R., and Gerisch, G., 1983, Responses of Dictyostelium discoideum to local stimulation by light, Cell Biol. Int. Rep.,7:611.

    Article  PubMed  Google Scholar 

  • Häder, D.-P., Colombetti, G., Lenci, F., and Quaglia, M., 1981, Phototaxis in the flagellated, Euglena gracilis and Ochromonas danica. Arch. Microbiol., 130:78 (and ref. cit.).

    Google Scholar 

  • Häder, D.-P., and Griebenow, K., Orientation of the green flagellate, Euglena gracilis, in a vertical column of water, FEMS Microbiol. Ecol., 53:159.

    Google Scholar 

  • Häder, D.-P, and Häder, M. A., 1988, Ultraviolet-B inhibition of motility in green and dark-bleached Euglena gracilis, Curr. Microbiol., 17:215.

    Article  Google Scholar 

  • Häder, D.-P., and Häder, M., 1989, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Cryptomonas, Botanica Acta 102:236.

    Google Scholar 

  • Häder, D.-P., Häder, M., Liu, S-M., and Ullrich, W., 1990, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Peridinium, Biosystems 23:335.

    Article  PubMed  Google Scholar 

  • Häder, D.-P., Lebert, M., and DiLena, M. R., 1986, New evidence for the mechanism for phototactic orientation of Euglena gracilis, Curr. Microbiol., 14:157.

    Article  Google Scholar 

  • Häder, D.-P., Lebert, M., and DiLena, M. R., 1987, Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis, Plant Physiol., 6:169.

    Google Scholar 

  • Häder, D.-P., and Poff, K. L., 1979a, Photodispersal from light traps by amoebae of Dictyostelium discoideum, Exptl. Mycol., 3:121.

    Article  Google Scholar 

  • Häder, D. P., and Poff, K. L., 1979b, Light-induced accumulations of Dictyostelium amoebae, Photochem. Photobiol., 29:1157.

    Article  Google Scholar 

  • Häder, D.-P., and Poff, K. L., 1979c, Inhibition of aggregation by light in the cellular slime mould, Dictyostelium discoideum, Arch. Microbiol., 123:281.

    Article  Google Scholar 

  • Häder, D.-P., and Poff, K. L., 1980, Effects of ionophores and TPMP+ on light-induced responses in Dictyostelium discoideum, Arch. Microbiol., 126:97.

    Article  Google Scholar 

  • Häder, D.-P., Rhiel, E., and Wehrmeyer, W., 1987, Phototaxis in the marine flagellate Cryptomonas maculate, J. Photochem. Photobiol. B., 1:115.

    Article  Google Scholar 

  • Häder, D.-P., Watanabe, M., and Furuya, M., 1988, Multiple photoreceptors in phototaxis of Dictyostelium amoebae, Protoplasma Suppl. 1:155.

    Article  Google Scholar 

  • Halldal, P., 1958, Action spectra of phototaxis and related problems in Volvocales, Ulva gametes and Di-nophyceae, Physiol. Plant. 11:118.

    Article  Google Scholar 

  • Halldal, P., 1959, Factors affecting light response in phototactic algae, Physiol. Plant. 12:742.

    Article  Google Scholar 

  • Hand, W. G., and Schmidt, J., 1975, Phototactic orientation by the marine dinoflagellate, Gyrodinium dorsum Kofoid. II. Flagellar activity and overall response mechanism, J. Protozool., 22:494.

    Google Scholar 

  • Harrington, H. R., and Learning, E., 1990, The reactions of Amoeba to light of different colors, Am. J. Physiol, 3:9.

    Google Scholar 

  • Hegemann, P., and Bruck, B., 1989, Light-induced stop response in Chlamydomonas reinhardtii: occurrence and adaptation phenomena, Cell Motil. Cytoskel., 14:501.

    Article  Google Scholar 

  • Hegemann, P., and Marwan, W., 1988, Single photons are sufficient to trigger movement response in Chlamydomonas reinhardtii, Photochem. Photobiol, 48:99.

    Article  Google Scholar 

  • Hildebrand, E., 1972, Avoiding reaction and receptor mechanism in protozoa, Acta Protozool, 11:361.

    CAS  Google Scholar 

  • Hildebrand, E., 1975, Bedeutung der Konkurrenz zwischen Calcium und anderen Kationen für die Steuerung der Leitfähigkeit sensorischer Membranen, Verh. Dtsch. Zool. Ges., 24:62.

    Google Scholar 

  • Holwill, M. E. J., 1966, The motion of Euglena viridis: the role of flagella, J. Exp. Biol., 44:579.

    PubMed  CAS  Google Scholar 

  • Hoops, J. H., and Witman, G. B., 1985, Basal bodies and associated structures are not requires for normal flagellar motion or phototaxis in the green alga, Chlorogonium elongatum, J. Cell Biol, 100:297.

    Article  PubMed  CAS  Google Scholar 

  • Inaba, F., Nakamura, R., and Yamaguchi, S., 1979, An electron-microscopic study on the pigment granules of Blepharisma, Cytologia (Tokyo) 23:72.

    Google Scholar 

  • Iwatsuki, K., and Naitoh, Y., 1981, The role of symbiotic Chlorella in photoresponses of Paramecium bursaria, Proc. Jpn. Acad. Ser. B., 57:318.

    Article  Google Scholar 

  • Iwatsuki, K., and Naitoh, Y., 1982, Photoresponses in colorless Paramecium, Experentia, 38:1453.

    Article  Google Scholar 

  • Iwatsuki, K., and Song, P-S., 1989, The ratio of extracellular Ca2+ to K+ ions affects the photoresponses in Stentor coeruleus, Comp. Biochem. Physiol, 92A:101.

    Article  Google Scholar 

  • Jacobson, D. N., 1979, The role of regulation of cell speed in the behavior of Physarum polycephalum amoebae, Exp. Cell Res., 122:219.

    Article  PubMed  CAS  Google Scholar 

  • James, T. W., 1987, Photomechanical transduction in Amoeba proteus: an action spectrum, J. Photochem. Photobiol. B., 1:203.

    Article  Google Scholar 

  • Jennings, H. S., 1904, Reactions to light in ciliates and flagellates, in: “Contributions to the Study of the Behavior of Lower Organisms,” Carnegie Institute, Washington, DC, pp. 31.

    Google Scholar 

  • Jensen, D. D., 1959, A theory of the behavior of Paramecium aurelia and behavioral effects of feeding, fision and UV microbeam irradiation, Behavior, 15:82.

    Article  Google Scholar 

  • Jirovec, O., 1934, Der Einfluß von ultravioletten Strahlen auf grüne und farblose Stämme von Euglena gracilis, Protoplasma, 21:577.

    Article  CAS  Google Scholar 

  • Kaneda, H., and Furuya, M., 1986, Temporal changes in swimming direction during the phototactic orientation in cells of Cryptomonas sp., Plant Cell Physiol, 27:265.

    Google Scholar 

  • Kaneda, H., and Furuya, M., 1987, Effect of calcium ions on phototactic orientation of individual Cryptomonas cells, Plant Sci., 48:31.

    Article  CAS  Google Scholar 

  • Kaufman, L. S., and Lyman, H., 1982, A 600 nm receptor in Euglena gracilis: its role in chlorophyll accumulation, Plant Sci. Lett., 26:293.

    Article  CAS  Google Scholar 

  • Kivik, P. A., and Walne, P. L., 1983, Algal photosensory apparatus probably represent multiple parallel evolutions. BioSystems 16:31.

    Article  Google Scholar 

  • Kohidal, L., Darvas, Z., and Csaba, G., 1987, The effect of varying illumination on imprinting of Tetrahymena by insulin, Acta Microbiol. Hung., 34:179.

    Google Scholar 

  • Kraml, M., and Marwan, W., 1983, Photomovement respones of the heterotrichous eiliate, Blepharisma japonicum, Photochem. Photobiol., 37:313.

    Article  CAS  Google Scholar 

  • Lankester, E. R., 1873, Blue stentorin - the coloring matter of Stentor coeruleus, Quart. J. Microscop. Sci., 13:139.

    Google Scholar 

  • Laurens, H., and Hooker, H. D., 1920, Studies on the relative physiological value of spectral lights. II. The sensibility of Volvox to wavelengths of equal energy content, J. Exp. Zool., 30:345.

    Article  Google Scholar 

  • Lee, J. J., Hutner, S. H., and Bovee, E. C., 1985, “An Illustrated Guide to Protozoa,” Society Protozoologists, Lawrence, KS.

    Google Scholar 

  • Lenci, F., Häder, D.-P., and Colombetti, G., 1984, Photosensory responses in freely motile microorganisms, in: “Membranes and Sensory Transduction,” Colombetti, G., and Lenci, F., eds., Plenum Press, New York, pp. 199.

    Chapter  Google Scholar 

  • Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A., 1978, Photoreceptor electrical potential in the phototaxis of the alga, Haematococcus pluvialis, Nature, Lond., 271:476.

    Article  CAS  Google Scholar 

  • Liu, S-M., Häder, D.-P, and Ulrich, W., 1990. Photoorientation in the dinoflagellate, Peridinium gatunense Nygaard, FEMS Microbiol. Lett., 73:91.

    Article  Google Scholar 

  • Mast, S. O., 1910, Reactions in Amoeba to light, J. Exp. Zool, 9:265.

    Article  Google Scholar 

  • Mast, S. O., 1941, Motor responses in unicellular organisms, in: “Protozoa in Biological Research,” Calkins, G. N., and Summers, F. M., Eds., Columbia Univ. Press, New York, pp. 271.

    Google Scholar 

  • Mast, S. O., and Hulpieu, H. R., 1930, Variation in responses to light in Amoeba proteus with special reference to the effects of salts and hydrogen ion concentration, Protoplasma, 11:412.

    Article  CAS  Google Scholar 

  • Mast, S. O., and Stahler, N., 1937, The relation between luminous intensity, adaptation to light and the rate of locomotion in Amoeba proteus (Leidy), Biol. Bull., 73:126.

    Article  Google Scholar 

  • Matsuoka, T., 1983, Distribution of photoreceptors inducing ciliary reversal and swimming acceleration in Blepharisma japonicum, J. Exp. Zool, 225:337.

    Article  Google Scholar 

  • Matsuoka, K., and Nakaoka, Y., 1988, Photoreceptor potential causing phototaxis of Paramecium bursaria, J. Exp. Biol, 137:477.

    Google Scholar 

  • Mergenhagen, D., 1980, Circadian rhythms in unicellular organisms, Curr. Topics Microbiol. Immunol, 90:123.

    Article  CAS  Google Scholar 

  • Merton, H., 1935, Zwangsreaktionen bei Stentor als Folge bestimmter Salzwirkungen, Biol. Z., 55:268.

    Google Scholar 

  • Meyer, R., and Hildebrand, E., 1988, Phototaxis of Euglena gracilis at low external calcium concentrations, J. Photochem. Photobiol. B., 2:443.

    Article  CAS  Google Scholar 

  • Mikolajczyk, E., 1986, Na+/K+ transport and photosensitivity of the colorless flagellate, Peranema trichophorum (Euglenida), Photochem. Photobiol, 43:455.

    Article  CAS  Google Scholar 

  • Mikolajczyk, E., and Walne, P. L., 1990, Photomotile response and ultrasturcture of the euglenoid flagellate, Astasia fritschii, J. Photochem. Photobiol. B., 6:275.

    Article  CAS  Google Scholar 

  • Moller, K. M., 1962, On the nature of stentorin, C. R. Trav. Lab. Karlsberg, 32:471.

    CAS  Google Scholar 

  • Morel-Laurens, N. M., and Feinleib, M. E., 1983, Photomovement in an “eyeless” mutant of Chlamydomonas, Photochem. Photobiol, 37:189.

    Article  Google Scholar 

  • Nakajima, K., and Nakaoka, Y., 1989, Circadian change of photosensitvity of Paramecium bursaria, J. Exp. Biol, 144:43.

    Google Scholar 

  • Niess, D., Reisser, W., and Wiessner, W., 1982, Photobehavior of Paramecium bursaria infected with different symbiotic and aposymbiotic species of Chlorella, Planta, 156:475.

    Article  Google Scholar 

  • Nultsch, W., 1983, The photocontrol of movement in Chlamydomonas, in: “The Biology of Photoreception,” Cosens, D. J., and Vincent-Price, D., eds., Soc. Exptl. Biol., Cambridge, UK, pp. 521.

    Google Scholar 

  • Nultsch, W., Pfau, J., and Dolle, R., 1986, Effects of calcium channel blockers on phototaxis and motility of Chlamydomonas reinhardtii, Arch. Microbiol, 144:393.

    Article  CAS  Google Scholar 

  • Okumura, H., 1963, Response to light in Paramecium, J. Fac. Sci. Hokkaido Univ. Ser. VI. Zool, 15:225.

    Google Scholar 

  • Oltmans, F., 1917, Uber Phototaxis, Z. Botanik, 9:257.

    Google Scholar 

  • Omedo, P., 1980, The photoreceptive apparatus of flagellated algal cells: comparative morphology and some hypotheses on functioning, in: “Photoreception and Sensory Transduction in Aneural Organisms,” Lenci, F., and Colombetti, G., eds., Plennun Press, New York, pp. 127.

    Google Scholar 

  • Opas, M., 1975, Studies on the locomotion of Amoeba proteus. I. The response to hydrogen ion concentration of the medium, Acta Protozool., 13:285.

    Google Scholar 

  • Piccinni, E., and Omodeo, P., 1975, Photoreceptors and phototactic programs in protista, Boll. Zool., 42:57.

    Article  Google Scholar 

  • Pietrowica-Kosmynka, D., 1971, Chemotactic effects of cations and pH on Stentor coeruleus, Acta Protozool, 9:235.

    Google Scholar 

  • Poff, K. L., Loomis, W. F., and Butler, W. L., 1974, Isolation and purification of the photoreceptor pigment associated with phototaxis in Dictyosteliuum discoideum, Proc. Natl. Acad. Sci. USA, 249:2164.

    CAS  Google Scholar 

  • Puytorac, P., and Njine, T., 1970, Sur l’ultrastructure des Loxodes (cilies holotriches), Protistologica, 6:427.

    Google Scholar 

  • Quinlan, R. A., Roobol, A., Pogson, C. I., and Gull, K., 1981, A correlation between in vivo and in vitro effects of the microtubule inhibitors colchicine, parbendazole and nocodazole on the myamoebae of Physarum pofycephalum, J. Gen. Microbiol., 122:1.

    PubMed  CAS  Google Scholar 

  • Reisser, W., and Häder, D.-P., 1984, Role of endosymbiotic algae in photokinesis and photophobic responses of ciliates, Photochem. Photobiol., 39:673.

    Article  Google Scholar 

  • Rhiel, E., Hader, D.-P., and Wehrmeyer, W., 1988, Photoorientation in a freshwater Cryptomonas species, J. Photochem. Photobiol. B., 2:123.

    Article  CAS  Google Scholar 

  • Rokoczy, L., Majcherczyk, A., and Huttermann, A., 1986, Changes in plasmodial pigments of Physarum polycephalum in relation to the age of the culture medium, Can. J. Microbiol., 33:217.

    Article  Google Scholar 

  • Ruben, L., Lageson, J., Hyzy, B., and Hooper, A. B., 1982, Growth cycle-dependent overproduction and accumulation of protoporphyrin IX in Tetrahymena: effect of heavy metals. J. Protozool., 29:233.

    PubMed  CAS  Google Scholar 

  • Rüffer, U., and Nultsch, W., 1985, High-speed cinematographic analysis of the movement of Chlamydomonas, Cell Motil, 5:251.

    Article  Google Scholar 

  • Sakaguchi, H., 1979, Effect of external ionic environments on phototaxis of Volvox carteri, Plant Cell. Physiol., 20:1643.

    CAS  Google Scholar 

  • Sakaguchi, H., and Iwasa, K., 1979, Two photophobic responses in Volvox carteri, Plant Cell Physiol., 20:909.

    Google Scholar 

  • Scevoli, P., Brisi, F., Colombetti, G., Ghetti, F., Lenci, F., and Passarelli, V., 1987, Photomotile responses of Blepharisma japonicum. I. Action spectra determination and time-resolves fluorescence of photoreceptor pigments. J. Photochem. Photobiol. B., 1:75.

    Article  CAS  Google Scholar 

  • Schaeffer, A. A., 1917, Reactions of Amoeba to light and the effect of light on feeding, Biol. Bull., 32:45.

    Article  Google Scholar 

  • Schaeffer, A. A. 1920, “Amoeboid Movement,” Princeton University Press, New Haven, CT.

    Google Scholar 

  • Schmidt, J. A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii, Nature, Lond., 262:713.

    Article  CAS  Google Scholar 

  • Schmidt, W., Thomson, K., and Butler, W. L., 1977, Cytochrome b in plasma membrane-enriched fractions from several photoresponsive organisms, Photochem. Photobiol. 26:407.

    Article  PubMed  CAS  Google Scholar 

  • Seshachar, B. R., and Rao, A. V. S. P., 1959, Observations on the pigment from an Indian species of Blepharisma (ciliata; protozoa), J. Sci. Industri. Res., 18C:76.

    Google Scholar 

  • Sevenants, M. R., 1965, Pigments of Blepharisma undulans compared with hypericin, J. Protozool., 12:240.

    PubMed  CAS  Google Scholar 

  • Shettles, L. B., 1937, Response to light in Peranema trichophorum with special reference to dark-adaptation and light-adaptation, J. Exp. Zool., 77:215.

    Article  Google Scholar 

  • Smyth, R. D., and Berg, H. C, 1982, Change in flagellar beat frequency of Chlamydomonas in response to light, Cell. Motil. (suppl.) 1:211.

    Article  Google Scholar 

  • Song, P-S., 1982, Photosensory transduction in Stentor coeruleus and related organisms, Biochim. Biophys. Acta. 639:1.

    Google Scholar 

  • Song, P-S., Tapley, K. J., and Berlin, J. D., The photoreceptor in Stentor coeruleus, in: “The Biology of Photoreception,” Cosens, D. J., and Vince-Price, D., eds., Soc. Exptl. Biol., Cambridge, UK.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E., 1983, Photoresponse of a colorless euglenoid flagellate, Astasia longa, Plant Sci. Lett, 32:101.

    Article  Google Scholar 

  • Teta, L. A., Ellsaesser, C. F., and Hanna, M. H., 1983, The role of light and an aggregation-stimulating factor suring aggregation of Polysphondylium violaceum, J. Gen. Microbiol., 129:167.

    Google Scholar 

  • Tollin, G., 1969, Energy transduction in algal phototaxis, Curr. Topics Bioenerget., 3:417.

    CAS  Google Scholar 

  • Uemetsu-Kaneda, H., and Furuya, M., 1982, Effects of viscosity on phototactic movement and period of cell rotation in Cryptomonas sp., Physiol. Plant, 56:194.

    Article  Google Scholar 

  • Usuki, I., and Hino, A., 1987, Hemoglobin content in various stocks of different species of the Paramecium aurelia group, Cell. Molec. Biol., 33:601.

    CAS  Google Scholar 

  • Wager, H., 1911, On the effect of gravity upon the movements and aggregations of Euglena viridis Ehrb. and other microorganisms, Phil. Trans. Roy. Soc. Lond., Ser. B. 201:333.

    Article  Google Scholar 

  • Walker, E. B., Lee, T. Y., and Song, P-S., 1979, Spectroscopic characterization of the Stentor photoreceptor, Biochim. Biophys. Acta, 587:129.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., and Furuya, M., 1974, Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sp., Plant Cell Physiol., 15:413.

    CAS  Google Scholar 

  • Weisz, P. B., 1950, On the mitochondrial nature of the pigmented granules in Stentor and Blepharisma, J. Morphol., 86:177.

    Article  CAS  Google Scholar 

  • Willie, J. W., and Ehret, C. F., 1968, Light synchronization of an endogenous circadian rhythm of cell division in Tetrahymena, J. Protozool., 15:785.

    Google Scholar 

  • Wood, D. C, 1976, Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleus, Photochem. Photobiol., 24:261.

    Article  PubMed  CAS  Google Scholar 

  • Worrest, R. C, and Hader, D.-P., 1989, Effects of stratospheric ozone depletion on marine microorganisms. Environm. Conservat., 16:261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Doughty, M.J. (1991). Mechanism and Strategies of Photomovement in Protozoa. In: Lenci, F., Ghetti, F., Colombetti, G., Häder, DP., Song, PS. (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. NATO ASI Series, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5988-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5988-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5990-6

  • Online ISBN: 978-1-4684-5988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics