Molecular Properties of Biological Light Sensors

  • Pill-Soon Song
  • Satoshi Suzuki
  • Il-Doo Kim
  • Ja Hong Kim
Part of the NATO ASI Series book series (NSSA, volume 211)


As the source of energy and as an environmental factor, light has played a crucial role in selection and adaptation processes in chemical and organismic evolution. Organisms ranging from prokaryotic bacteria to eukaryotic mammals directly absorb light of varying wavelengths for energy supply, for survival and/or light sensory signal transduction. Efficient absorption of a specific wavelength of light by the photoreceptor/light sensor molecules triggers a variety of photobiological responses in different organisms. Figure 1 is an attempt to demonstrate the diversity of photosensor molecules and their corresponding light absorbance characteristics, particularly specific wavelength light for absorbance maximum. Some organisms such as the firefly are capable of converting chemical energy to light energy (bioluminescence). This lighting phenomenon is also included in what we might call the “photobiolgoical spectrum” (Fig. 1). Figure 2 illustrates the simplest route for light absorption by a photosensor molecule and for the resulting excitation of the molecule which initiates a sensory transduction chain in photobiological responses of organisms.


Photosynthetic Reaction Center Reaction Center Complex Lower Excited Singlet State Light Signal Transduction Sensory Rhodopsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubailly, M., and Santus, R., 1986, Oxidations photosensitized by pterins and diaminopterins, in: “Chemistry and Biology of Pterines,” R. A. Cooper, and V. M. Whitehead, eds., de Gruyter, Berlin, pp. 99–102.Google Scholar
  2. Boucher, F., and Gingras, G., 1984, Spectral evidence for photo-induced isomerization of carotenoids in bacterial photoreaction center, Photochem. Photobiol.,40:277.CrossRefGoogle Scholar
  3. Boucher, F., van der Rest, M., and Gingras, G., 1977, Structure and function of carotenoids in the photoreaction center from Rhodospirillum rubrum, Biochim. Biophys. Acta, 461:339.PubMedCrossRefGoogle Scholar
  4. Braslavsky, S. E., Holzwarth, A. R., Wendler, J., Ruzsicska, B. P., and Schaffner, K., 1984, Picosecond time-resolved and stationary fluorescence of oat photochrome highly enriched in the native 124 kdalton protein, Biochim. Biophys. Acta, 191:265.Google Scholar
  5. Braslavsky, S. E., Ruzsicska, B. P., and Schaffner, K., 1985, The kinetics of the early stages of the phyto-chrome phototransformation Pr Pfr. A comparative study of small (60 kdalton) and native (124 kdalton) phytochromes from oat, Photochem. Photobiol., 41:681.CrossRefGoogle Scholar
  6. Chae, Q., Song, P. S., Johansen, J. E., and Liaaen-Jensen, S., 1977, Linear dichroic spectra of cross-conjugated carotenals and configurations of in-chain substituted carotenoids, J.Am. Chem. Soc., 99:5609.PubMedCrossRefGoogle Scholar
  7. Chai, Y. G., Song, P. S., Cordonnier, M.-M., and Pratt, L. H., 1987, Biochemistry, 26:4947.PubMedCrossRefGoogle Scholar
  8. Chahidi, C., Aubailly, A., Momzikoff, A., Bazin, M., and Santus, R., 1981, Photophysical and photosensitizing properties of 2-amino-4-pteridone: a natural pigment, Photochem. Photobiol., 33:641.CrossRefGoogle Scholar
  9. Choi, J. D., Fugate, R. D., and Song, P. S., 1980, Nanosecond time-resolved fluorescence of phototautome-ric lumichrome, J.Am. Chem. Soc., 102:5293.CrossRefGoogle Scholar
  10. Choi, J. K., Kim, I. S., Kwon, T. I., Parker, W., and Song, P. S., 1990, Spectral perturbations and oligo-mer/monomer formation in 124-kilodaltonylvena phytochrome, Biochemistry, 29:6883.PubMedCrossRefGoogle Scholar
  11. Clayton, R. K., 1965, “Molecular Physics in Photosynthesis,” Blaisdell, New York, p. 196.Google Scholar
  12. Cordonnier, M.-M., Greppin, H., and Pratt, L. H., 1985, Monoclonal antibodies with differing affinities to the red absorbing and farred absorbing forms of phytochrome, Biochemistry, 24:3246.CrossRefGoogle Scholar
  13. Davidson, E., and Cogdell, R. J., 1981, Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas spheroides R26, Biochim. Biophys. Acta, 635:295.PubMedCrossRefGoogle Scholar
  14. Deisenhofer, L, Epp, O., Miki, K., Huber, R., and Michel, H., 1986, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3Å resolution, Nature, 318: 618.CrossRefGoogle Scholar
  15. Dirks, G., Moore, A. L., Moore, T. A., and Gust, D., 1980, Light absorption and energy transfer in polyene-porphyrin esters, Photochem. Photobiol., 32:277.CrossRefGoogle Scholar
  16. Ekelund, N. G. A., Sundqvist, C, Quail, P. H., and Vierstra, R. D., 1985, Chromophore rotation in 124-kilodalton Avena phytochrome as measured by light-induced changes in linear dichroism, Photochem. Photobiol., 41:2212.CrossRefGoogle Scholar
  17. Farrens, D. L., Holt, R. E., Rospendowski, B. N., Song, P. S., and Cotton, T. M., 1989, Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochrome and phycocyanin chromophores, J. Am. Chem. Soc., 111:9162.CrossRefGoogle Scholar
  18. Fodor, S. P. A., Lagarias, J. C, and Mathies, R., 1988, Resonance Raman spectra of the Pr-form of phytochrome, Photochem. Photobiol., 48:129.PubMedCrossRefGoogle Scholar
  19. Forward, Jr., R. B., 1976, Light and diurnal vertical migration: Photobehavior and photophysiology of plankton, Photochem. Photobiol Rev., 1:157, and references by the author therein.Google Scholar
  20. Foster, K., Saranak, J., Derguini, F., Zarilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal, Biochemistry, 28:819,PubMedCrossRefGoogle Scholar
  21. Furuya, M., ed., 1987, “Phytochrome and Photoregulation in Plants,” Academic Press, Tokyo and New York, pp. 354.Google Scholar
  22. Galland, P., Keiner, P., Dornemann, D., Senger, H., Brodhun, B., and Hader, D.-P., 1990, Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis, Photochem. Photobiol., 51:675.Google Scholar
  23. Galland, P., and Senger, H., 1988, The role of pterins in the photoreception and metabolism of plants, Photochem. Photobiol, 48:811.CrossRefGoogle Scholar
  24. Grimm, R., Eckerskorn, Ch., Lottspeich, F., Zenger, C, and Riidiger, W., 1988, Sequence analysis of proteolytic fragments of 124-kilodalton phytochrome from etiolated Avena sativa L.: Conclusions on the conformation of the native protein, Planta, 174:396.CrossRefGoogle Scholar
  25. Hahn, T. R., Song, P. S., Quail, P. H., and Vierstra, R. D., 1984, Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight, Plant Physiol., 74:755.PubMedCrossRefGoogle Scholar
  26. Hashimoto, H., and Koyama, Y., 1988, Time-resolved resonance Raman spectroscopy of triplet B-earotene produced from all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers and high-pressure liquid chromatography analyses of photoisomerization via the triplet state, J. Phys. Chem. 92:2101.CrossRefGoogle Scholar
  27. Hashimoto, H., and Koyama, Y., 1989, The C=C stretching Raman lines of β-carotene isomers in the S1 state as detected by pump-probe resonance Raman spectroscopy, Chem. Phys. Lett., 154:321.CrossRefGoogle Scholar
  28. Hayashi, H., Kolaczkowski, S. V., Noguchi, T., Blanchard, D., and Atkinson, G. H., 1990, Picosecond time-resolved resonance Raman scattering and absorbance changes from carotenoids in light-harvesting systems of photosynthetic bacterium Chromatium vinosum, J. Am. Chem. Soc, 112:4664.CrossRefGoogle Scholar
  29. Heelis, P. F., Okamura, T., and Sancar, A., 1990, Excited-state properties of Escherichia coli DNA pho-tolyase in the picosecond to millisecond time scale, Biochemistry, 29:5694.PubMedCrossRefGoogle Scholar
  30. Heihoff, K., Braslavsky, S. E., and Schaffner, K., 1987, Study of 124-kilodalton oat phytochrome photocon-versions in vitro with laser-induced optoacoustic spectroscopy, Biochemistry, 26:1422.CrossRefGoogle Scholar
  31. Hemmerich, P., and Haas, W., 1975, Recent developments in the study of fully reduced flavin, in: “Reactivity of Flavins,” K. Yagi, ed., University Park Press, Baltimore, MD. pp. 1.Google Scholar
  32. Holt, R. E., Farrens, D. L., Song, P. S., and Cotton, T. M., 1989, Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 1. Biliverdin photoiso-mers, J. Am. Chem. Soc., 111:9156.CrossRefGoogle Scholar
  33. Johnson, J. C, Hainlive, B. E., and Rajagopalan, K. V., 1981, Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase and nitrate reductase. Identification of a pteridine as a structural component, J. Biol. Chem., 255:1783.Google Scholar
  34. Jones, A. M., and Erickson, H. P., 1989, Domain structure of phytochrome from Avena sativa visualized by electron microscopy, Photochem. Photobiol., 49:479.PubMedCrossRefGoogle Scholar
  35. Jones, A. M., and Quail, P. H., 1986, Quaternary structure of 124-kilodalton phytochrome from Avena sativa, Biochemistry, 25:2987.CrossRefGoogle Scholar
  36. Jones, A. M., and Quail, P. H., 1989, Peptide fragments from the amino-terminal domain involved in pro-tein-chromophore interactions, Planta, 178:147.CrossRefGoogle Scholar
  37. Jorns, M. S., Wang, B., and Jordan, S. P., 1987, DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: Elimination of the enzyme’s second chromophore by reduction with sodium borohydride, Biochemistry, 26:6810.PubMedCrossRefGoogle Scholar
  38. Jorns, M. S., Wang, B., Jordan, S. P., and Chanderkar, L. P., 1990, Chromophore function and interaction in Escherichia coli DNA photolyase: Reconstitution of the apoenzyme with pterin and/or flavin derivatives, Biochemistry, 29:552.PubMedCrossRefGoogle Scholar
  39. Koyama, Y., Takatsuka, L, Kanani, M., Tomimoto, K., Kito, M., Shimamura, T., Yamashita, J., Saiki, K., and Tsukida, K., 1990, Configurations of carotenoids in the reaction center and the light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes, Photochem. Photobiol., 51:119.CrossRefGoogle Scholar
  40. Koka, P., and Song, P. S., 1977, The chromophore topography and binding environment of peridinin- chlorophyll a- protein complexes from marine dinoflagellate algae, Biochim. Biophys. Acta, 495:220.PubMedGoogle Scholar
  41. Lagarias, J. C, and Mercurio, F. M., 1985, Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-Kda Avena phytochrome in vivo, J. Biol. Chem., 260:2415.PubMedGoogle Scholar
  42. Lagarias, J. C, and Rapoport, H., 1980, Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore, J. Am. Chem. Soc., 102:4821.CrossRefGoogle Scholar
  43. Ledbetter, J. W., and Tyner, S., 1990, Photostimulated reaction of pterin, biopterin and folic acid with B-NADPH, Photochem. Photobiol., 51:7s.Google Scholar
  44. Lee, J., Carreira, L. A., Gast, R., Irwin, R. M., Koka, P., Small, E. D., and Visser, A. J. W. G., 1981, Properties of a lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum, in: “Bioluminescence and Chemiluminescence,” M. A. DeLuca, and W.D. McElroy, eds., Academic Press, New York. pp. 103.Google Scholar
  45. Lipson, E. D., and Horwitz, B. A., 1990, Photosensory reception and transduction, in: “Sensory Receptors and Signal Transduction,” J. Spudich, ed., in: Modern Cell Biology, vol. 7 (Series Editor B. Satir) Academic Press, New York, In press.Google Scholar
  46. Moore, A. L., Dirks, G., Gust, D., and Moore, T. A., 1980, Energy transfer from carotenoid polyenes to porphyrins: a light-harvesting antenna, Photochem. Photobiol., 32:691.CrossRefGoogle Scholar
  47. Nechushtai, R., Thornber, J. P., Patterson, L. K., Fessenden, R. W., and Levanon, H., 1988, Photosensitization of triplet carotenoid in photosynthetic light-harvesting complex of photosystem II, J.Phys. Chem., 92:1165.CrossRefGoogle Scholar
  48. Norris, J. R., and Schiffer, M., 1990, Photosynthetic reaction centers in bacteria. Chem. Eng. News, July 30, p. 22.CrossRefGoogle Scholar
  49. Parker, W., Romanowski, M., and Song, P. S., 1990, Conformation and its functional implications in phytochrome, in: “Phytochrome Properties and Biological Action,” B. Thomas, ed., Springer, Berlin, in press.Google Scholar
  50. Parker, W., and Song, P. S., 1990, Location of helical regions in tetrapyrrole containing proteins by a helical hydrophobic moment analysis: Applications to phytochrome, J. Biol. Chem, 265:17568.PubMedGoogle Scholar
  51. Payne, G., Wills, M., Walsh, C., and Sancar, A., 1990, Reconstitution of Escherichia coli photolyase with flavins and flavin analogs, Biochemistry, 29:5706.PubMedCrossRefGoogle Scholar
  52. Romanowski, M., and Song, P. S., 1990, Structural domains of phytochrome deduced from homologies in amino acid sequences, Biophys. J., submitted.Google Scholar
  53. Rospendowski, B. N., Farrens, D. L., Cotton, T. M., and Song, P. S., 1989, Surface-enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome, FEBS Lett., 258:1.PubMedCrossRefGoogle Scholar
  54. Rüdiger, W., Thümmler, F., Cmiel, E., and Schneider, S., 1983, Chromophore structure of the physiologically active form (Pfr) of phytochrome, Proc. Natl. Acad. Sci. USA, 80:6244.PubMedCrossRefGoogle Scholar
  55. Sancar, G. B., Jorns, M. S., Payne, G., Fluke, D. J., Rupert, C. S., and Sancar, A., 1987, Action mechanism of Escherichia coli DNA photolyase, J.Biol. Chem., 262:492.PubMedGoogle Scholar
  56. Song, P. S., 1969, Theoretical considerations of the electronic spectra of methyl flavins, Int. J. Quantum Biol., 3:303.CrossRefGoogle Scholar
  57. Song, P. S., 1983a, The electronic spectroscopy of photoreceptors (other than rhodopsin), Photochem. Photobiol. Rev., 1:11.Google Scholar
  58. Song, P. S., 1983b, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioengin., 12:35.CrossRefGoogle Scholar
  59. Song, P. S., 1985, Primary molecular events in aneural cell photoreceptors, in: “Sensory Perception and Transduction in Aneural Organisms,” G. Colombetti, F. Lenci, and P. S. Song, eds., NATO ASI Series A, Life Sci. Vol. 89, Plenum, New York. pp. 47.CrossRefGoogle Scholar
  60. Song, P. S., 1987, Possible primary photoreceptors, in: “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” H. Senger, ed., vol. II, CRC Press, Boca Raton, FL. pp. 3.Google Scholar
  61. Song, P. S., 1988, The molecular topography of phytochrome: Chromophore and apoprotein, J.Photochem. Photobiol. B: Biol., 2:43.CrossRefGoogle Scholar
  62. Song, P. S., and Chae, Q., 1979, The transformation of phytochrome to its physiologically active form, Photochem. Photobiol., 30:117.CrossRefGoogle Scholar
  63. Song, P. S., Koka, P., Prezelin, B. B., and Haxo, F. T., 1976, Molecular topology of the photosynthetic light-harvesting complex, peridinin-chlorophyll a-protein complex from marine dinoflagellates, Biochemistry, 15:4422.PubMedCrossRefGoogle Scholar
  64. Song, P. S., and Moore, T. A., 1968, Mechanism of the photodephosphorylation of menadiol diphosphate. A model for bioquantum conversion, J. Am. Chem. Soc, 90:6507.CrossRefGoogle Scholar
  65. Song, P. S., and Poff, K. L., 1989, Photomovement. in: “The Science of Photobiology” 2nd ed., K. C. Smith, ed., Plenum, New York. pp. 305–346.CrossRefGoogle Scholar
  66. Song, P. S., Singh, B. R., Tamai, N., Yamazaki, T., Yamazaki, I., Tokutomi, S., and Furuya, M., 1989, Primary photoprocesses of phytochrome. Picosecond fluorescence kinetics of oat and pea phytochromes, Biochemistry, 28:3265.PubMedCrossRefGoogle Scholar
  67. Song, P. S., Sun, M., Koziolowa, A., and Koziol, J., 1974, Phototautomerism of lumichromes and alloxazines,J. Am. Chem. Soc, 96:4319.CrossRefGoogle Scholar
  68. Song, P. S., and Suzuki, S., 1990, Properties and evolution of photoreceptor, in: “Photoreceptor Evolution and Function,” M. G. Holmes, ed., Academic Press, London, in press.Google Scholar
  69. Song, P. S., Tamai, N., and Yamazaki, I., 1986, Viscosity dependence of primary photoprocesses of 124 kDalton phytochrome, Biophys. J., 49:645.PubMedCrossRefGoogle Scholar
  70. Sun, M., and Song, P. S., 1973, Excited states and reactivity of 5-deazaflavine. Comparative studies with flavine, Biochemistry, 12:4663.PubMedCrossRefGoogle Scholar
  71. Thomas, B., ed., 1990, “Phytochrome Properties and Biological Action,” NATO ASI Cell Biology Series, Springer, Berlin, in press.Google Scholar
  72. Tokutomi, S., Nakasako, M., Sakai, J., Kataoka, M., Yamamoto, K. T., Wada, M., and Furuya, M., 1989, A model for the dimeric molecular structure of phytochrome based on small angle X-ray scattering, FEBS Lett., 247:139.CrossRefGoogle Scholar
  73. Tomizawa, K., Nagatani, A., and Furuya, M., 1990, Phytochrome genes: Studies using the tools of molecular biology and photomorphogenesis mutants, Photochem. Photobiol., 52:265.PubMedCrossRefGoogle Scholar
  74. Trautman, J. K., Shreve, A. P., Owens, T. G., and Albrecht, A. C, 1990, Femtosecond dynamics of carote-noid-to-chlorophyll energy transfer in thylakoid membrane preparations from Phaeodactylum tricor-nutum and Nannochloropsis sp, Chem. Phys. Lett., 166:369.CrossRefGoogle Scholar
  75. VanDerWoode, W. J., 1985, A dimeric mechanism for the action of phytochrome: Evidence from photo-thermal interactions in lettuce seed germination, Photochem. Photobiol., 42:655.CrossRefGoogle Scholar
  76. Vierstra, R. D., and Quail, P. H., 1983, Purification and initial characterization of 124-kilodalton phytochrome from Avena, Biochemistry, 22:2498.CrossRefGoogle Scholar
  77. Visser, A. J. W. G., Ghisla, S., Massey, V., Muller, F., and Veeger, C, 1979, Fluorescence properties of reduced flavins and flavoproteins, Eur. J. Biochem., 101:13.PubMedCrossRefGoogle Scholar
  78. Wada, M., and Kadota, A., 1987, Photo- and polarotropism in fern protonemata, in: “Phytochrome and Photoregulation in Plants,” M. Furuya, Academic Press, Tokyo and New York. pp. 239–248.Google Scholar
  79. Walsh, C., 1986, Naturally occurring 5-deazaflavin coenzymes: Biological redox roles, Acc. Chem. Res., 19:216.CrossRefGoogle Scholar
  80. Wasielewski, M., and Kispert, L. D., 1986, Direct measurement of the lowest excited singlet state lifetime of all-trans-β-carotene and related carotenoids, Chem. Phys. Lett., 128:238.CrossRefGoogle Scholar
  81. Wong, Y. S., Cheng, H. C., Walsch, D. A., and Lagarias, J. C., 1986, Phosphorylation of Avena phytochrome in vitro as a probe for light-induced conformational changes, J.Biol. Chem., 261:12089.Google Scholar
  82. Yagi, K., Ohishi, N., Nishimoto, K., Choi, J. D., and Song, P. S., 1980, Effects of hydrogen bonding on the electronic spectra and reactivity of flavins, Biochemistry, 19:1553.PubMedCrossRefGoogle Scholar
  83. Yan, B., Takahashi, T., Johnson, R., Derguini, F., and Nakanishi, K., 1990, All-trans/13-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsin in Halobacterium halobium, Biophys. J., 57:807.PubMedCrossRefGoogle Scholar
  84. Yang, S. F., Ku, S. H., and Pratt, H. K., 1967, Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide, J.Biol. Chem., 242:521A.Google Scholar
  85. Zechmeister, L., 1962, “Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes,” Academic Press, Vienna, pp. 80.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Pill-Soon Song
    • 1
  • Satoshi Suzuki
    • 2
  • Il-Doo Kim
    • 3
  • Ja Hong Kim
    • 4
  1. 1.Institute for Cellular and Molecular Photobiology Department of ChemistryUniversity of NebraskaLincolnUSA
  2. 2.Department of Industrial ChemistryShinshu UniversityNaganoJapan
  3. 3.Department of ChemistryChosun UniversityKwangjuKorea
  4. 4.Department of ChemistryCheonbuk National UniversityCheonjuKorea

Personalised recommendations