Phototropism in Fungi

  • Edward D. Lipson
Part of the NATO ASI Series book series (NSSA, volume 211)


Phototropism, the curvature of a growing part of a plant or fungus toward or away from light, is a well known, but not particularly well understood, phenomenon. The general topic of phototropism has been extensively reviewed (Foster, 1977; Dennison, 1979; Hertel, 1980; Gressel and Horwitz, 1982; Pohl and Russo, 1984; Briggs and Baskin, 1988; Firn, 1990; Iino, 1990). This chapter will focus on two Zygomycete fungi, Phycomyces and Pilobolus, both of which are currently under active investigation. A recent review (Galland, 1990) compares phototropism in Phycomyces with that in higher plants. For a more extensive coverage of the classical work on fungi, see the review article by Page (1968). A more recent phototropism review with some coverage on fungi is that by Pohl and Russo (1984). Page (1968) has listed fungi with known phototropism and offered the generalization that, although phototropism occurs widely in terrestrial fungi, it does not seem to occur in aquatic fungi.


Cold Spring Harbor Cold Spring Harbor Laboratory Fluence Rate Sensory Transduction Blue Light Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, M. I., Eslava, A. P., and Lipson, E. D., 1989, Phototropism mutants of Phycomyces blakesleeanus isolated at low light intensity, Exp. Mycol., 13:38.CrossRefGoogle Scholar
  2. Bergman, K., Eslava, A. P., and Cerdá-Olmedo, E., 1973, Mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 123:1.PubMedCrossRefGoogle Scholar
  3. Blaauw, O. H., and Blaauw-Jansen, G., 1970, The phototropic responses of Avena coleoptiles, Acta Bot. Neerl., 19:755.Google Scholar
  4. Briggs, W. R., 1960, Light dosage and phototropic responses of corn and oat coleoptiles, Plant Physiol., 35:951.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Briggs, W. R., and Baskin, T. I., 1988, Phototropism in higher plants - controversies and caveats, Botan. Acta, 101:133.Google Scholar
  6. Campuzano, V., Díaz Mínguez, J. M., Eslava, A. P., and Alvarez, M. I., 1990, A new gene (madI) involved in the phototropic response of Phycomyces, Mol. Gen. Genet., 223:148.PubMedCrossRefGoogle Scholar
  7. Cerdá-Olmedo, E., and Lipson, E. D., 1987a, A biography of Phycomyces, in:Phycomyces,” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, New York, p. 7.Google Scholar
  8. Cerdá-Olmedo, E., and Lipson, E. D., eds., 1987b, “Phycomyces,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  9. Cohen, 1974, Cyclic AMP levels in Phycomyces during a response to light, Nature, 251:144.PubMedCrossRefGoogle Scholar
  10. Cosgrove, D. J., 1985, Kinetic separation of phototropism from blue-light inhibition of stem elongation, Photochem. Photobiol., 42:745.PubMedCrossRefGoogle Scholar
  11. De Fabo, E., 1980, On the nature of the blue light photoreceptor: still an open question, in: “The Blue Light Syndrome,” Senger, H., ed., Springer-Verlag, Berlin, p. 187.CrossRefGoogle Scholar
  12. Delbrück, M., and Shropshire, W., Jr., 1960, Action and transmission spectra of Phycomyces, Plant Physiol., 35:194.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Delbrück, M., and Reichardt, W., 1956, System analysis for the light growth reactions of Phycomyces, in: “Cellular Mechanisms in Differentiation and Growth,” Rudnick, D., ed., Princeton University Press, Princeton, New Jersey, p. 3.Google Scholar
  14. Dennison, D. S., 1979, Phototropism, in: “Encylopedia of Plant Physiology,” New Series Vol. 7, “Physiology of Movements,” Haupt, W., and Feinleib, M. E., eds., Springer-Verlag, Berlin, Heidelberg, New York, p. 506.Google Scholar
  15. Dennison, D. S., and Foster, K. W., 1977, Intracellular rotation and the phototropic response of Phycomyces, Biophys. J., 18:103.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Firn, R. D., 1990, Phototropism - the need for a sense of direction, Photochem. Photobiol., 52:255.CrossRefGoogle Scholar
  17. Foster, K. W., 1977, Phototropism of coprophilous Zygomycetes, Annu. Rev. Biophys. Bioeng., 6:419.PubMedCrossRefGoogle Scholar
  18. Fukshansky, L., and Steinhardt, A. R., 1987, Spatial factors in Phycomyces phototropism: analysis of balanced responses, J. Theor. Biol.,129:301.CrossRefGoogle Scholar
  19. Galland, P., 1989, Photosensory adaptation in plants, Botan. Acta, 102:11.Google Scholar
  20. Galland, P., 1990, Phototropism of the Phycomyces sporangiophore: a comparison with higher plants, Photochem. Photobiol., 52:233.CrossRefGoogle Scholar
  21. Galland, P., and Lipson, E. D., 1985, Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH, Photochem. Photobiol., 41:331.PubMedCrossRefGoogle Scholar
  22. Galland, P., and Lipson, E. D., 1987a, Light calibrations and radiometric units, in:Phycomyces,” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 375.Google Scholar
  23. Galland, P., and Lipson, E. D., 1987b, Light physiology of Phycomyces sporangiophores, in:Phycomyces” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 49.Google Scholar
  24. Galland, P., and Russo, V. E. A., 1984, Light and dark adaptation in Phycomyces phototropism, J. Gen. Physiol., 84:101.PubMedCrossRefGoogle Scholar
  25. Galland, P., and Senger, H., 1988a, The role of flavins as photoreceptors, J. Photochem. Photobiol. B:Biol., 1:277.CrossRefGoogle Scholar
  26. Galland, P., and Senger, H., 1988b, The role of pterins in the photoreception and metabolism of plants, Photochem. Photobiol., 48:811.CrossRefGoogle Scholar
  27. Galland, P., Pandya, A., and Lipson, E. D., 1984, Wavelength dependence of dark-adaptation in Phycomyces phototropism, J. Gen, Physiol., 84:739.CrossRefGoogle Scholar
  28. Galland, P., Palit, A., and Lipson, E. D., 1985, Phycomyces: phototropism and light-growth response to pulse stimuli, Planta, 165:538.PubMedCrossRefGoogle Scholar
  29. Galland, P., Corrochano, L. M., and Lipson, E. D., 1989a, Subliminal light control of dark adaptation kinetics in Phycomyces phototropism, Photochem. Photobiol., 49:485.PubMedCrossRefGoogle Scholar
  30. Galland, P., Orejas, M., and Lipson, E. D., 1989b, Light-controlled adaptation kinetics in Phycomyces: evidence for a novel yellow-light absorbing pigment, Photochem. Photobiol., 49:493.PubMedCrossRefGoogle Scholar
  31. Gamow, R. I., Ruiz-Herrera, J., and Fischer, E. P., 1987, The cell wall of Phycomyces, in:Phycomyces,” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 223.Google Scholar
  32. Gehring, C. A., Williams, D. A., Cody, S. H., and Parish, R. W., 1990, Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium, Nature, 345:528.PubMedCrossRefGoogle Scholar
  33. Gressel, J., and Horwitz, B., 1982, Gravitropism and phototropism, in: “The Molecular Biology of Plant Development,” Smith, H., and Grierson, D., eds., (“Molecular Biology of Plant Development”, Vol. 18), Blackwell Scientific Publications, Oxford, p. 405.Google Scholar
  34. Hasegawa, K., Sakoda, M., and Bruinsma, J., 1989, Revision of the theory of phototropism in plants: a new interpretation of a classical experiment, Planta, 178:540.PubMedCrossRefGoogle Scholar
  35. Herrera-Estrella, L., and Ruiz-Herrera, J., 1983, Light response in Phycomyces blakesleeanus: evidence for roles of chitin biosynthesis and breakdown, Exp. Mycol., 7:362.CrossRefGoogle Scholar
  36. Hertel, R., 1980, Phototropism of lower plants, in: “Photoreception and Sensory Transduction in Aneural Organisms,” Lenci, F., and Colombetti, G., eds., Plenum Press, New York and London, p. 89.CrossRefGoogle Scholar
  37. Horwitz, B. A., 1989, The potential for second messengers in light signaling, in: “Second Messengers in Plant Growth and Development,” Boss, W. F., and Morre, D. J., eds., Alan R. Liss, Inc., New York, p. 289.Google Scholar
  38. Horwitz, B. A., Trad, C. H., and Lipson, E. D., 1985, Differential spectrophotometry of Phycomyces mutants with abnormal photoresponses, Photochem. Photobiol., 44:207.CrossRefGoogle Scholar
  39. Iino, M., 1990, Phototropism - mechanism and ecological implications, Plant Cell Environ., 13:633.CrossRefGoogle Scholar
  40. Iino, M., and Schäfer, E., 1984, Phototropic response of the stage I Phycomyces sporangiophore to a single pulse of blue light, Proc. Natl. Acad. Sci. USA, 81:7103.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jesaitis, A. J., 1974, Linear dichroism and orientation of the Phycomyces photopigment, J. Gen. Physiol., 63:1.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kataoka, H., 1987, The light-growth response of Vaucheria. A conditio sine qua non of the phototropic response?, Plant Cell Physiol., 28:61.Google Scholar
  43. Koga, K., and Ootaki, T., 1983a, Complementation analysis among piloboloid mutants of Phycomyces blakesleeanus, Exp. Mycol., 7:161.CrossRefGoogle Scholar
  44. Koga, K., and Ootaki, T., 1983b, Growth of the morphological, piloboloid mutants of Phycomyces blakesleeanus, Exp. Mycol., 7:148.CrossRefGoogle Scholar
  45. Koga, K., Sato, T., and Ootaki, T., 1984, Negative phototropism of the piloboloid mutants of Phycomyces blakesleeanus Bgff, Planta, 162:97.PubMedCrossRefGoogle Scholar
  46. Kubo, H., and Mihara, H., 1988, Phototropic fluence-response curves for Pilobolus crystallinus sporangiophore, Planta, 174:174.PubMedCrossRefGoogle Scholar
  47. Kubo, H., and Mihara, H., 1989, Blue-light-induced shift of the phototropic fluence-response curve in Pilobolus sporangiophores, Planta, 179:288.PubMedCrossRefGoogle Scholar
  48. Lipson, E. D., and Block, S. M., 1983, Light and dark adaptation in Phycomyces light-growth response, J. Gen. Physiol., 81:845.PubMedCrossRefGoogle Scholar
  49. Lipson, E. D., and Galland, P., 1987, Measurement of Phycomyces light responses, in:Phycomyces,”Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, New York, p. 367.Google Scholar
  50. Lipson, E. D., and Häder, D.-P., 1984, Video data acquisition for movement responses in individual organisms, Photochem. Photobiol., 39:437.CrossRefGoogle Scholar
  51. Lipson, E. D., and Horwitz, B. A., 1991, Photosensory reception and transduction, in: “Sensory Receptors and Signal Transduction,” Spudich, J., ed., (“Modern Cell Biology”, Vol. 7), Academic Press, New York, in press.Google Scholar
  52. Lipson, E. D., and Pratap, P., 1988, System analysis of Phycomyces light-growth response with Gaussian white noise and sum-of-sinusoids test stimuli, Ann. Biomed. Eng., 16:95.PubMedCrossRefGoogle Scholar
  53. Lipson, E. D., and Terasaka, D. T., 1981, Photogeotropism in Phycomyces double mutants, Exp. Mycol., 5:101.CrossRefGoogle Scholar
  54. Lipson, E. D., Terasaka, D. T., and Silverstein, P. S., 1980, Double mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 179:155.CrossRefGoogle Scholar
  55. Meistrich, M. L., Fork, R. L., and Matricon, J., 1970, Phototropism in Phycomyces as investigated by focused laser radiation, Science, 169:370.PubMedCrossRefGoogle Scholar
  56. Mooney, J. L., and Yager, L. N., 1990, Light is required for conidiation in Aspergillus nidulans, Genes Dev., 4:1473.PubMedCrossRefGoogle Scholar
  57. Page, R. M., 1968, Phototropism in fungi, in: “Photophysiology,” Giese, A. C., ed., Academic Press, New York, p. 65.CrossRefGoogle Scholar
  58. Page, R. M., and Curry, G. M., 1966, Studies on phototropism of young sporangiophores of Pilobolus kleinii, Photochem. Photobiol., 5:31.CrossRefGoogle Scholar
  59. Pohl, U., and Russo, V. E. A., 1984, Phototropism, in: “Membranes and Sensory Transduction,” Colombetti, G., and Lenci, F., eds., Plenum, New York, p. 231.CrossRefGoogle Scholar
  60. Pollock, J. A., Lipson, E. D., and Sullivan, D. T., 1985a, Analysis of microsomal flavoproteins from Phycomyces sporangiophores: candidates for the blue-light photoreceptor, Planta, 163:506.PubMedCrossRefGoogle Scholar
  61. Pollock, J. A., Lipson, E. D., and Sullivan, D. T., 1985b, Electrophoretic analysis of proteins from night-blind mutants of Phycomyces, Biochem. Genet., 23:377.Google Scholar
  62. Popescu, T., Roessler, A., and Fukshansky, L., 1989a, A novel effect in Phycomyces phototropism - positive bending and compensation spectrum in far UV, Plant Physiol., 91:1586.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Popescu, T., Zangler, F., Sturm, B., and Fukshansky, L., 1989b, Image analyzer used for data acquisition in phototropism studies, Photochem. Photobiol., 50:701.CrossRefGoogle Scholar
  64. Presti, D., Hsu, W. J., and Delbrück, M., 1977, Phototropism in Phycomyces mutants lacking ß-carotene, Photochem. Photobiol., 26:403.CrossRefGoogle Scholar
  65. Presti, D. E., and Galland, P., 1987, Photoreceptor biology of Phycomyces, in:Phycomyces,”Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 93.Google Scholar
  66. Ruiz-Herrera, J., Martinez-Cadena, G., Valenzuela, C., and Reyna, G., 1990, Possible roles of calcium and calmodulin in the light-stimulation of wall biosynthesis in Phycomyces, Photochem. Photobiol., 52:217.CrossRefGoogle Scholar
  67. Short, T. W., and Briggs, W. R., 1990, Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L.) seedlings, Plant Physiol., 92:179.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Shropshire, W., Jr., 1987, Phycomyces bibliography, in:Phycomyces,”Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 381.Google Scholar
  69. Song, P. S., and Moore, T. A., 1974, On the photoreceptor pigment for phototropism and phototaxis: is a carotenoid the most likely candidate?, Photochem. Photobiol., 19:435.PubMedCrossRefGoogle Scholar
  70. Song, P.-S., 1984, Photophysical aspects of blue light receptors: the old question (flavins versus caroteno-ids) re-examined, in: “Blue Light Effects in Biological Systems,” Senger, H., ed., Springer-Verlag, Berlin, Heidelberg, New York, p. 75.CrossRefGoogle Scholar
  71. Steinhardt, A., Popescu, T., and Fukshansky, L., 1989, Is the dichroic photoreceptor for Phycomyces phototropism located at the plasma membrane or at the tonoplast?, Photochem. Photobiol., 49:79.CrossRefGoogle Scholar
  72. Steinhardt, A. R., and Fukshansky, L., 1985, Diffusion approximation for scattering in a cylinder: optics of phototropism, J. Opt. Soc. Am. A, 2:1725.CrossRefGoogle Scholar
  73. Steinhardt, A. R., Shropshire, W., Jr., and Fukshansky, L., 1987, Invariant properties of absorption profiles in sporangiosphores of Phycomyces blaskesleeanus under balancing bilateral illumination, Photochem. Photobiol., 45:515.CrossRefGoogle Scholar
  74. Trad, C. H., Horwitz, B. A., and Lipson, E. D., 1987, Light-induced absorbance changes in extracts of Phycomyces sporangiophores: modifications in night-blind mutants, J. Photochem. PhotobioL B:Biol., 1:305.CrossRefGoogle Scholar
  75. Tsuru, T., Koga, K., Aoyama, H., and Ootaki, T., 1988, Optics in Phycomyces blakesleeanus sporangiophores relative to determination of phototropic orientation, Exp. Mycol., 12:302.CrossRefGoogle Scholar
  76. Valenzuela, C., and Ruiz-Herrera, J., 1989, Inhibition of phototropism in Phycomyces sporangiophores by calmodulin antagonist and antimicrotubular agents, Curr. Microbiol., 18:11.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Edward D. Lipson
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations