Action Spectroscopy

  • Edward D. Lipson
Part of the NATO ASI Series book series (NSSA, volume 211)


Action spectroscopy — the measurement, as a function of wavelength, of the sensitivity of a particular biological response or effect — is a standard approach towards identifying receptor pigment(s) for photobiological phenomena (Jagger, 1967; Shropshire, 1972; Hartmann, 1983; Schäfer et al., 1983; Schafer and Fukshansky, 1984; Galland, 1987). Comparison of an action spectrum with absorption spectra of known pigments often reveals the identity of the pigment, or class of pigments, involved. Some action spectra simply show the magnitude of a response as a function of wavelength, under conditions where a standard photon fluence (or fluence rate) is applied in all measurements. The difficulty with this expedient approach is that the response may well depend nonlinearly on the fluence. Such nonlinearity can introduce severe distortion into an action spectrum obtained in this way. The preferred method, instead, is to measure a separate fluence-response curve for each wavelength of interest, and then to determine the photon fluence needed to elicit a standard response level, for example 50% of maximum response. The reciprocal of the requisite photon fluence represents the sensitivity of the system, and is used as the ordinate of the action spectrum.


Action Spectrum Fluence Rate Hill Function Semilogarithmic Scale Halobacterium Halobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, M. I., Eslava, A. P., and Lipson, E. D., 1989, Phototropism mutants of Phycomyces blakesleeanus isolated at low light intensity, Exp. Mycol., 13:38.CrossRefGoogle Scholar
  2. Baskin, T. I., and Iino, M., 1987, An action spectrum in the blue and ultraviolet for phototropism in alfalfa, Photochem. Photobiol., 46:127.CrossRefGoogle Scholar
  3. Bejarano, E. R., Avalos, J., Lipson, E. D., and Cerdá-Olmedo, E., 1991, Photoinduced accumulation of carotene in Phycomyces, Planta, in press.Google Scholar
  4. Bergman, K., Eslava, A. P., and Cerdá-Olmedo, E., 1973, Mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 123:1.PubMedCrossRefGoogle Scholar
  5. Bevington, P. R., 1969, “Data Reduction and Error Analysis for the Physical Sciences,” McGraw-Hill, New York.Google Scholar
  6. Corrochano, L. M., Galland, P., Lipson, E. D., and Cerdá-Olmedoi, E., 1988, Photomorphogenesis in Phycomyces: fluence-response curves and action spectra, Planta, 174:315.CrossRefGoogle Scholar
  7. Ensminger, P. A., Chen, X., and Lipson, E. D., 1990, Action spectra for photogravitropism of Phycomyces wild type and three behavioral mutants (L150, L152, and L154), Photochem. Photobiol., 51:681.PubMedGoogle Scholar
  8. Ensminger, P. A., and Lipson, E. D., 1991, Action spectra of the light-growth response in three behavioral mutants of Phycomyces, Planta, in press.Google Scholar
  9. Ensminger, P. A., Schaefer, H. R., and Lipson, E. D., 1991, Action spectra of the light-growth response of Phycomyces, Planta, in press.Google Scholar
  10. Foster, K., Saranak, J., Derguini, F., Jayathirtha, V., Zarrilli, G., Okabe, M., Fang, J.-M., Shimizu, N., and Nakanishi, K., 1988a, Rhodopsin activation: a novel view suggested by in vivo Chlamydomonas experiments, J. Am. Chem. Soc., 110:6588.CrossRefGoogle Scholar
  11. Foster, K., Saranak, J., Derguini, F., Zarilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal, Biochemistry, 28:819.PubMedCrossRefGoogle Scholar
  12. Foster, K. W., Saranak, J., and Dowben, P. A., 1990, Spectral sensitivity, structure, and activation of eukaryotic rhodopsins: activation spectroscopy of rhodopsin analogs in Chlamydomonas, J. Photochem. Photobiol B:Biol., in press.Google Scholar
  13. Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional protoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas, Nature, 311:756.Google Scholar
  14. Foster, K., Saranak, J., and Zarrilli, G., 1988b, Autoregulation of rhodopsin in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 85:6379.PubMedCrossRefGoogle Scholar
  15. Foster, K. W., and Smyth, R. D., 1980, Light antennas in phototactic algae, Microbiol Rev., 44:572.PubMedGoogle Scholar
  16. Galland, P., 1987, Action spectroscopy, in: “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Senger, H., ed., CRC Press, Boca Raton, Florida, p. 37.Google Scholar
  17. Galland, P., and Lipson, E. D., 1985a, Action spectra for phototropic balance in Phycomyces blakesleeanus: dependence on reference wavelength and intensity range, Photochem. Photobiol., 41:323.PubMedCrossRefGoogle Scholar
  18. Galland, P., and Lipson, E. D., 1985b, Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH, Photochem. Photobiol., 41:331.PubMedCrossRefGoogle Scholar
  19. Galland, P., and Lipson, E. D., 1987, Blue-light reception in Phycomyces phototropism: evidence for two photosystems operating in low- and high-intensity ranges, Proc. Natl. Acad Sci. USA, 84:104.PubMedCrossRefGoogle Scholar
  20. Galland, P., Orejas, M., and Lipson, E. D., 1989, Light-controlled adaptation kinetics in Phycomyces: evidence for a novel yellow-light absorbing pigment, Photochem. Photobiol., 49:493.PubMedCrossRefGoogle Scholar
  21. Galland, P., and Senger, H., 1988a, The role of flavins as photoreceptors, J. Photochem. PhotobioL BiBiol., 1:277.CrossRefGoogle Scholar
  22. Galland, P., and Senger, H., 1988b, The role of pterins in the photoreception and metabolism of plants, Photochem. Photobiol., 48:811.CrossRefGoogle Scholar
  23. Grossweiner, L. I., 1989, Photophysics, in: “The Science of Photobiology,” Smith, K. C., ed., Plenum Press, New York, p. 1.CrossRefGoogle Scholar
  24. Hamilton, W. C., 1964, “Statistics in Physical Science,” Ronald Press, New York.Google Scholar
  25. Hartmann, K. M., 1983, Action spectroscopy, in: “Biophysics,” Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H., eds., Springer-Verlag, Berlin, Heidelberg, New York, p. 115.Google Scholar
  26. Jagger, J., 1967, “Introduction to Research in Ultraviolet Photobiology,” Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  27. Lipson, E. D., and Presti, D., 1980, Graphical estimation of cross sections from fluence-response data, Photochem. Photobiol., 32:383.CrossRefGoogle Scholar
  28. Lipson, E. D., and Terasaka, D. T., 1981, Photogeotropism in Phycomyces double mutants, Exp. Mycol., 5:101.CrossRefGoogle Scholar
  29. Naka, K. I., and Rushton, W. A. H., 1966, S-potentials from colour units in the retina of fish (Cyprinidae), J. Physiol., 185:536.PubMedGoogle Scholar
  30. Nultsch, W., Throm, G., and von Rimscha, I., 1971, Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur, Arch. Microbiol., 90:47.Google Scholar
  31. Ootaki, T., Fischer, E. P., and Lockhart, P., 1974, Complementation between mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 131:233.CrossRefGoogle Scholar
  32. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1985, “Numerical Recipes,” Cambridge University Press, Cambridge, England.Google Scholar
  33. Presti, D. E., and Galland, P., 1987, Photoreceptor biology of Phycomyces, in: “Phycomyces,” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 93.Google Scholar
  34. Presti, D., Hsu, W. J., and Delbrück, M., 1977, Phototropism in Phycomyces mutants lacking ß-carotene, Photochem. Photobiol., 26:403.CrossRefGoogle Scholar
  35. Schafer, E., and Fukshansky, L., 1984, Action spectroscopy, in: “Techniques in Photomorphogenesis,” Smith, H., and Holmes, M. G., eds., Academic Press, London, p. 109.Google Scholar
  36. Schäfer, E., Fukshansky, L., and Shropshire, W., Jr., 1983, Action spectroscopy of photoreversible pigment systems, in: “Encyclopedia of Plant Physiology”, New Series, Vol. 16 A,B, “Photomorphogenesis,” Shropshire, W., Jr., and Mohr, H., eds., Springer-Verlag, Berlin, Heidelberg, New York, p. 39.Google Scholar
  37. Schmid, R., Idziak, E.-M., and Tünnermann, M., 1987, Action spectrum for the blue-light-dependent morphogenesis of hair whorls in Acetabularia mediterranea,Planta, 171:96.CrossRefGoogle Scholar
  38. Senger, H., ed., 1980, “The Blue Light Syndrome,” Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  39. Senger, H., ed., 1984, “Blue Light Effects in Biological Systems,” Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  40. Senger, H., ed., 1987, “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Vol. I and II, CRC Press, Boca Raton, Florida.Google Scholar
  41. Shropshire, W., Jr., 1972, Action spectroscopy, in: “Phytochrome,” Mitrakos, K., and Shropshire, W., Jr., eds., Academic Press, London, p. 162.Google Scholar
  42. Smyth, R. D., Saranak, J., and Foster, K. W., 1988, Algal visual systems and their photoreceptor pigments, Prog. Phycol. Res., 6:225.Google Scholar
  43. Stoeckenius, W., Wolff, E., and Hess, B., 1988, A rapid population method for action spectra applied to Halobacterium halobium, J. Bact., 170:2790.PubMedGoogle Scholar
  44. Trad, C. H., and Lipson, E. D., 1987, Biphasic fluence-response curves and derived action spectra for light-induced absorbance changes in Phycomyces mycelium, J.Photochem. Photobiol. B:Biol., 1:169.CrossRefGoogle Scholar
  45. Williams, T. P., and Gale, J. G., 1978, “Compression” of retinal responsivity: V-log I functions and increment thresholds, in: “Visual Psychophysics and Physiology,” Armington, J. C., ed., Academic Press, New York, p. 129.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Edward D. Lipson
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations