Photoreception and Photomovements in Blepharisma japonicum

  • Francesco Ghetti
Part of the NATO ASI Series book series (NSSA, volume 211)

Abstract

From the beginning of the century, the red heterotrichous ciliate Blepharisma has been an interesting subject of studies in the field of photobiology because of its endogenous pigment blepharismin. In fact, if Blepharisma is exposed to relatively strong light, in the presence of oxygen, blepharismin acts as a strong photosensitizer and readily causes its death. This almost unique behavior of an organism producing a pigment that photosensitizes not only its predators but the organism itself, is a puzzle for proto-zooloeists studying evolutionary processes.

Keywords

Acidity Immobilization Carotenoid Ruthenium Alkalinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, H. J., Cameron, D. W., and Raverty, W. D., 1976, Chemistry of the Coccoidea. II Condensed polycyclic pigments from two Australian Pseudococcids (Hemiptera), Aust. J. Chern., 29:1509.CrossRefGoogle Scholar
  2. Cubeddu, R., Ghetti, F., Lend, F., Taroni, P., and Ramponi, R., 1990, Time-gated fluorescence of blepharismin, the photoreceptor pigment for photomovement of Blepharisma, Photochem. Photobiol., 51:567.CrossRefGoogle Scholar
  3. Giese, A. C., 1973, “Blepharisma:The Biology of a Light-sensitive Protozoan,” Stanford University Press, Stanford.Google Scholar
  4. Giese, A. C., 1981, The photobiology of Blepharisma,in:Smith, K. C., ed., “Photochemical Photobiological Reviews,” Plenum, New York, pp. 139.Google Scholar
  5. Gualtieri, P., Passarelli, V., and Barsanti, L., 1989, In vivo micro-spectrophotometric investigation of Blepharisma japonicum, J. Photochem. Photobiol B: Biol. 3:379.CrossRefGoogle Scholar
  6. Kim, I.-H., Rhee, J. S., Huh, J. W., Florell, S., Faure, B., Lee, K. W., Kahsai, T., Song, P.-S., Tamai, N., Yamazaki T., and Yamazaki, I., 1990, Structure and function of the photoreceptors stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins, Biochim. Biophys. Acta, 1040:43.PubMedCrossRefGoogle Scholar
  7. Kraml, M., and Marwan, W., 1983, Photomovements responses of the heterotrichous ciliate Blepharisma japonicum, Photochem. Photobiol., 37:313.CrossRefGoogle Scholar
  8. Lenci, F., and Ghetti, F., 1989, Photoreceptor pigments for photomovement of microorganisms: some spectroscopic and related studies, J.Photochem. Photobiol. B.: Biol., 3:1.CrossRefGoogle Scholar
  9. Lenci, F., Ghetti, F., Gioffré, D., Passarelli, V., Heelis, P. F., Thomas, B., Phillips, G. O., and Song, P.-S., 1989, Effects of the molecular environment on some spectroscopic properties of Blepharisma photoreceptor pigment, J.Photochem. Photobiol. B: Biol., 3:449.CrossRefGoogle Scholar
  10. Matsuoka, T., 1983a, Distribution of photoreceptors inducing ciliary reversal and swimming acceleration in Blepharisma japonicum, J. Exp. Biol, 225:337.Google Scholar
  11. Matsuoka, T., 1983b, Negative phototaxis in Blepharisma japonicum, J. Protozool., 30:409.Google Scholar
  12. Matsuoka, T., and Shigenaka, Y., 1985, Mechanism of cell elongation in Blepharisma japonicum, with special reference to the role of cytoplasmic microtubules, Cytobios, 42:215.Google Scholar
  13. Miyake, A., Harumoto, T., Salvi, B., and Rivola, V., 1990, Defensive function of pigment granules in Blepharisma japonicum, Eur. J. Protist., 25:310.CrossRefGoogle Scholar
  14. Navas Diaz, A., 1990, Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review, J.Photochem. Photobiol., A: Chem., 53:141.CrossRefGoogle Scholar
  15. Nultsch, W., and Schuchart, H., 1985, A model for phototactic reaction chain of the cyanobacterium Anabaena variabilis, Arch. Microbiol., 142:180.CrossRefGoogle Scholar
  16. Passarelli, V., Lenci, F., Colombetti, G., Barone, E., and Nobili, R., 1984, The possible role of H+ and Ca2+ in photobehavior of Blepharisma japonicum, in:Senger, H., ed., “Blue Light Effects in Biological Systems,” Springer, Berlin, pp. 480.CrossRefGoogle Scholar
  17. Scevoli, P., Bisi, F., Colombetti, G., Ghetti, F., Lenci, F., and Passarelli, V., 1987, Photomotile responses of Blepharisma japonicum I: Action spectra determination and time-resolved fluorescence of photoreceptor pigments, J.Photochem. Photobiol., B: Biol., 1:75.CrossRefGoogle Scholar
  18. Schuchart, H., and Nultsch, W., 1984, Possible role of singlet molecular oxygen in the control of the photo-tactic reaction sign of Anabaena variabilis, J. Photochem., 25:317.CrossRefGoogle Scholar
  19. Sevenants, M. R., 1965, Pigments of Blepharisma undulans compared with hypericin, J.Protozool., 12:240.PubMedGoogle Scholar
  20. Song, P.-S., 1981, Photosensory transduction in Stentor coeruleus and related organisms, Biochim. Biophys. Acta, 639:1.Google Scholar
  21. Song, P.-S., 1983, Protozoan and related photoreceptors: molecular aspects, Ann. Rev. Biophys. Bioeng., 12:35.CrossRefGoogle Scholar
  22. Song, P.-S., Kim, I.-H., Florell, S., Tamai, N., Yamazaki, T., and Yamazaki, I., 1990, Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence, Biochim. Biophys. Acta, 1040:58.PubMedCrossRefGoogle Scholar
  23. Spikes, J. D., 1989, Photosensitization, in:Smith, K. C., ed., “The Science of Photobiology,” Plenum, New York, pp. 79.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Francesco Ghetti
    • 1
  1. 1.C.N.R. Istituto di BiofisicaPisaItaly

Personalised recommendations