Processing of Photosensory Signals in Halobacterium halobium. Common Features of the Bacterial Signalling Chain and of Information Processing in Higher Developed Organisms

  • Angelika Schimz
  • Eilo Hildebrand
Part of the NATO ASI Series book series (NSSA, volume 211)


Halobacteria recognize changes of light intensity, process the information within the cell, and respond by a particular locomotor behavior. The cell can integrate signals from different photoreceptors and chemoreceptors, and it adapts to constant environmental conditions. The bacteria are already equipped with highly developed devices for acquisition and processing of information, and the question arises, whether the mechanisms which they use can be found as basic components of complex signalling processes in multicellular organisms.


Period Doubling Periodic Perturbation Excitatory Signal Swimming Direction Flagellar Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, M., Lebert, M., Oesterhelt, D., and Hazelbauer, G. L., 1989, Methyl-accepting taxis proteins in Halobacterium halobium, EMBO J., 8:631.PubMedGoogle Scholar
  2. Alam, M., and Oesterhelt, D., 1984, Morphology, function and isolation of halobacterial flagella, J. Mol. Biol., 176:459.PubMedCrossRefGoogle Scholar
  3. Benovic, J. L., Bouvier, M., Caron, M. G., and Lefkowitz, R. J., 1988, Regulation of adenylyl cyclase-cou-pled ß-adrenergic receptor, Ann. Rev. Cell Biol., 4:405.PubMedCrossRefGoogle Scholar
  4. Berridge, M. J., and Rapp, P. E., 1979, A comparative survey of the function, mechanism and control of cellular oscillators, J. Exp. Biol., 81:217.PubMedGoogle Scholar
  5. Bogomolni, R. A., and Spudich, J. L., 1982, Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium, Proc. Natl. Acad. Set USA, 79:6250.CrossRefGoogle Scholar
  6. Bünning, E., 1973, “The physiological clock. Orcadian Rhythms and Biological Chronometry,” Rev. 3rd ed., The English Universities Press, London.Google Scholar
  7. Casey, P. J., Graziano, M. P., Freissmuth, M., and Gilman, A. G., 1988, Role of G proteins in transmembrane signalling, Cold Spr. Harbor Symp. Quant. Biol., 53:203.CrossRefGoogle Scholar
  8. DeHaan, R. L., 1967, Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture, Devel. Biol., 16:216.CrossRefGoogle Scholar
  9. Dencher, N. A., and Hildebrand, E., 1979, Sensory transduction in Halobacterium halobium: Retinal protein pigment controls UV-induced behavioral response, Z. Naturforsch., 34c:841.Google Scholar
  10. Gilman, A. G., 1987, G proteins: transducers of receptor-generated signals, Ann. Rev. Biochem., 56:615.PubMedCrossRefGoogle Scholar
  11. Goldbeter, A., and Koshland, D. E., Jr., 1981, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA, 78:6840PubMedCrossRefGoogle Scholar
  12. Hildebrand, E., and Dencher, N., 1975, Two photosystems controlling behavioural responses of Halobacterium halobium, Nature, 257:46.PubMedCrossRefGoogle Scholar
  13. Hildebrand, E., and Schimz, A., 1983, Photosensory behavior of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium, Photochem. Photobiol., 37:581.CrossRefGoogle Scholar
  14. Hildebrand, E., and Schimz, A., 1986, Integration of photosensory signals in Halobacterium halobium, J. Bacteriol., 167:305.PubMedGoogle Scholar
  15. Hildebrand, E., and Schimz, A., 1987, Role of the response oscillator in inverse responses of Halobacterium halobium to weak light stimuli, J. Bacteriol., 169:254.PubMedGoogle Scholar
  16. Hildebrand, E., and Schimz, A., 1990, The lifetime of photosensory signals in Halobacterium halobium and its dependence on protein methylation, Biochim. Biophys. Acta, 1052:96.PubMedCrossRefGoogle Scholar
  17. Koshland, D. E., Jr., Sanders, D. A., and Weis, R. M., 1988, Roles of methylation and phosphorylation in the bacterial sensing system, Cold Spr. Harbor Symp. Quant. Biol., 53:11.CrossRefGoogle Scholar
  18. Linkens, D. A., 1979, Modelling of gastro-intestinal electric rhythms. In: “Biological Systems Modelling and Control,” Linkens, D. A., ed., pp. 202, Peregrinus, Stevenage.Google Scholar
  19. Marwan, W., Schafer, W., and Oesterhelt, D., 1990, Signal transduction in Halobacterium depends on fu-marate, EMBO J., 9:355.PubMedGoogle Scholar
  20. Nanjundiah, V., 1973, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42:63.PubMedCrossRefGoogle Scholar
  21. Noble, D., 1975, “The Initiation of the Heartbeat,” Clarendon Press, Oxford.Google Scholar
  22. Olsen, L. F., and Degn, H., 1985, Chaos in biological systems, Q. Rev. Biophys., 18:165.PubMedCrossRefGoogle Scholar
  23. Parkinson, J. S., 1988, Protein phosphorylation in bacterial chemotaxis, Cell, 53:1PubMedCrossRefGoogle Scholar
  24. Pinsker, H. M., and Willis, W. D., eds., 1980, “Information Processing in the Nervous System,” Raven Press, New York.Google Scholar
  25. Poggio, G. F., and Viernstein, L. J., 1964, Time series analysis of impulse sequences of thalamic somatic sensory neurons, J. Neurophysiol., 27:517.PubMedGoogle Scholar
  26. Rapp, P. E., 1987, Why are so many biological systems periodic? Progress Neurobiol., 29:261.CrossRefGoogle Scholar
  27. Rössler, O. E., 1976, An equation for continuous chaos, Phys. Lett., 57A:397.Google Scholar
  28. Schimz, A., 1981, Methylation of membrane proteins is involved in sensory behavior of Halobacterium halobium, FEBS Lett., 125:205.PubMedCrossRefGoogle Scholar
  29. Schimz, A., 1982, Localization of the methylation system involved in sensory behavior of Halobacterium halobium and its dependence on calcium, FEBS Lett., 139:283.CrossRefGoogle Scholar
  30. Schimz, A., and Hildebrand, E., 1985, Response regulation and sensory control in Halobacterium halobium based on an oscillator, Nature, 317:641.CrossRefGoogle Scholar
  31. Schimz, A., and Hildebrand, E., 1987, Effects of cGMP, calcium and reversible methylation on sensory signal processing in halobacteria, Biochim. Biophys. Acta, 923:222.CrossRefGoogle Scholar
  32. Schimz, A., and Hildebrand, E., 1989, Periodicity and chaos in the response of Halobacterium to temporal light gradients, Eur. Biophys. J., 17:237.CrossRefGoogle Scholar
  33. Schimz, A., Hinsch, K.-D., and Hildebrand, E., 1989, Enzymatic and immunological detection of a G-pro-tein in Halobacterium, FEBS Lett., 249:59.CrossRefGoogle Scholar
  34. Schimz, A., Sperling, W., Ermann, P., Bestmann, H. J., and Hildebrand, E., 1983, Substitution of retinal by analogues in retinal pigments of Halobacterium halobium. Contribution of bacteriorhodopsin and halorhodopsin to photosensory activity, Photochem. Photobiol., 38:417.CrossRefGoogle Scholar
  35. Sperling, W., and Schimz, A., 1980, Photosensory retinal pigments in Halobacterium halobium, Biophys. Struct Mech., 6:165.PubMedCrossRefGoogle Scholar
  36. Spudich, J. L., and Stoeckenius, W., 1979, Photosensory and chemosensory behavior of Halobacterium halobium, Photobiochem. Photobiophys., 1:43.Google Scholar
  37. Spudich, E. N., Takahashi, T., and Spudich, J. L., 1989, Sensory rhodopsins I and II modulate a methyla-tion/demethylation system in Halobacterium halobium phototaxis, Proc. Natl Acad. Sci. USA, 86:7746.PubMedCrossRefGoogle Scholar
  38. Takahashi, T., Tomioka, H., Kamo, N., and Kobatake, Y., 1985, A photosystem other than PS 370 also mediates the negative phototaxis of Halobacterium halobium, FEMS Microbiol Lett., 28:161.CrossRefGoogle Scholar
  39. Wilden, U., Hall, S. W., and Kuhn, H., 1986, Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments, Proc. Natl Acad. Sci. USA, 83:1174.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Angelika Schimz
    • 1
  • Eilo Hildebrand
    • 1
  1. 1.Institut für Biologische InformationsverarbeitungForschungszentrum JülichJülichGermany

Personalised recommendations