Advertisement

Photoreception in Chlamydomonas

  • Peter Hegemann
Part of the NATO ASI Series book series (NSSA, volume 211)

Abstract

When the unicellular photosynthetic alga Chlamydomonas is faced with changes in direction, wavelength or intensity of the ambient light, it exhibits distinct behavioral responses, which are direction changes if the changes are small or stop responses upon larger changes. At continuous irradiation Chlamydomonas orients to or away from the light source (positive or negative phototaxis). These movement responses have been under investigation for more than 100 years (Pfeffer, 1904; Nultsch and Häder, 1988) but neither the photoreceptor nor the signal transduction process have been characterized in detail.

Keywords

Signal Transduction Process Negative Phototaxis Calcium Channel Inhibitor Trans Retinal Retinal Chromophore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, M., and Hegemann, P., 1991, In vitro identification of rhodopsin in the green alga Chlamydomonas, Biochemistry, submitted.Google Scholar
  2. Dolle, R., Pfau, J., and Nultsch, W., 1986, Role of calcium ions on motility and phototaxis on Chlamydomonas reinhardtii, J. Plant Physiol., 126:467.CrossRefGoogle Scholar
  3. Foster, K. W., Saranak, J., Derguini, F., Rao, J., Zarrilli, G. R., Okabe, M., Fang, J.-M., Shimizu, N., and Nakanishi, K., 1988b, Rhodopsin activation: A novel view suggested by in vivo Chlamydomonas experiments, J. Am. Soc., 110:6588.CrossRefGoogle Scholar
  4. Foster, K. W., Saranak, J., Derguini, F., Zarrilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal., Biochemistry, 28:819.PubMedCrossRefGoogle Scholar
  5. Foster, K. W., Saranak, J., Patel, N., Zarrilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional chromophore for phototaxis in the unicellular alga Chlamydomonas, Nature, 311:756.PubMedCrossRefGoogle Scholar
  6. Foster, K. W., Saranak, J., and Zarrilli, G. R., 1988a, Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 85:6379.PubMedCrossRefGoogle Scholar
  7. Foster, K. W., and Smyth, R. D., 1980, Light antennas in phototactic algae, Microbiol. Rev., 44:572.PubMedGoogle Scholar
  8. Harz, H., and Hegemann, P., 1991, Rhodopsin-regulated ion channel activation in Chlamydomonas, Biophys. J., submitted.Google Scholar
  9. Hegemann, P., and Bruck B., 1989, The light-induced stop response in Chlamydomonas. Occurence and adaptation phenomena, Cell Motil., 14:501.CrossRefGoogle Scholar
  10. Hegemann, P., Hegemann, U., Foster, K. W., 1988, Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo, Photochem. Photobiol., 48:123.PubMedCrossRefGoogle Scholar
  11. Hegemann, P., Neumeier, K., Hegemann, U., and Kuehnle, E., 1990, The role of calcium in Chlamydomonas movement responses as analysed by calcium channel inhibitors, Photochem. Photobiol., 52:575.PubMedCrossRefGoogle Scholar
  12. Kamyia. R., and Witman, G., 1984, Submicromolar levels of calcium control the balance of beating between the two flagella in demembrenated models of Chlamydomonas., J. Cell Biol., 98:97.CrossRefGoogle Scholar
  13. Korolkov, S. N., Garnovskaya, M. N., Basov, A. S., Chunaev, A. S., and Dumler, I. L., 1990, The detection and characterisation of G-proteins in the eyespot of Chlamydomonas reinhardtii, FEBS Lett., 270:132.PubMedCrossRefGoogle Scholar
  14. Krinski, N. I., and Litvin, R. P., 1964, Carotenoids of wild type and mutant strains of the green alga Chlamydomonas reinhardl, Plant Physiol,. 48:680.CrossRefGoogle Scholar
  15. Litvin, F. F., Seneshchekov, O. A., and Seneshchekov, V. A., 1978, Photoreceptor electric potential in the phototaxis in the alga Haematococcus pluvialis, Nature, 271:476.PubMedCrossRefGoogle Scholar
  16. Nakanishi, K., Derguini, F., Rao, J., Zarrilli, G., Okabe, M., Lien, T., Johnson, R., Foster, K. W., and Saranak, J., 1989, Theory of rhodopsin activation: probable charge redistribution of excited state chromophore, Pure Appl. Chem. 61:361.CrossRefGoogle Scholar
  17. Nultsch, W., and Häder, D.-P., 1988, Photomovement in motile microorganisms n, Photochem. Photobiol., 47:837.PubMedCrossRefGoogle Scholar
  18. Nultsch, W., Pfau, J., and Dolle, R., 1986, Effect of calcium channel blockers on phototaxis and motility of Chlamydomonas reinhartii, Arch. Microbiol., 144:393.CrossRefGoogle Scholar
  19. Nultsch, W., Throm, G., v. Rimscha, I., 1971, Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homo-kontinuierlicher Kvltur, Arch. Microbiol. 80:351.CrossRefGoogle Scholar
  20. Oesterhelt, D., Hegemann, P., Tavan, P., and Schulten, K., 1986, Trans-cis isomerization of retinal and a mechanism for ion translocation in halorhodopsin, Eur. J. Biophys., 14:123.CrossRefGoogle Scholar
  21. Pfeffer, W., 1904, “Pflanzenphysiologie,” Leipzig.Google Scholar
  22. Schmidt, J. A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii., Nature, 262:113.CrossRefGoogle Scholar
  23. Smith, S. O., Paling, I., Copie, V., Raleigh, D. P., Courtin, J., Pardoen, J. A., Lugtenburg, J., Mathies, R. A., and Griffin, R. G., 1987, Low temperature solid state NMR studies of retinal chromophore in rhodopsin, Biochemistry, 26:1606.PubMedCrossRefGoogle Scholar
  24. Stavis, R. L., and Hirschberg, R., 1973, Phototaxis in Chlamydomonas reinhardtii, J. Cell Biol., 59:367.PubMedCrossRefGoogle Scholar
  25. Takahashi, T., Yan, B., Mazur, P., Derguini, F., Nakanishi, K., and Spudich, J., 1990, Color regulation in the archibacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II), Biochemistry in press.Google Scholar
  26. Uhl, R., and Hegemann, P., 1990a, Adaptation of Chlamydomonas phototaxis: I. A light scattering apparatus for measuring the phototactic rate of microorganisms with high time resolution, Cell Motil., 15:230.CrossRefGoogle Scholar
  27. Uhl, R., and Hegemann, P., 1990b, Probing visual transduction in a plant cell. Optical recording of rhodopsin-induced structural changes from Chlamydomonas, Biophys. J., in press.Google Scholar
  28. van der Steen, R., Biesheuvel, P. L., Mathies, R. A., and Lugtenburg, J., 1986, Retinal analogs with locked 6–7 conformation show that bacteriorhodopsin requires the 6-s-trans conformation, J. Am. Chem. Soc., 108:6410.CrossRefGoogle Scholar
  29. Warshel, A., and Karplus, M., 1974, Calculation of ππ* excited state conformations and vibronic structure of retinal and related molecules, J. Am. Chem. Soc., 96:5677.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Peter Hegemann
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations