Advertisement

Phototaxis and Gravitaxis in Euglena gracilis

  • Donat-P. Häder
Part of the NATO ASI Series book series (NSSA, volume 211)

Abstract

Like many other motile microorganisms, the photosynthetic unicellular flagellate, Euglena gracilis, orients in its habitat using a number of external chemical and physical parameters (Häder, 1988; Nultsch and Häder, 1988). While some microorganisms have been found to move and orient in the water column with the aid of chemical (Berg, 1985; Macnab, 1985) and thermal (Mizuno et al., 1984; Poff, 1985) gradients, the magnetic field of the earth (Ofer et al., 1984; Frankel, 1984; Esquivel and de Barros, 1986) and even electrical currents (Mast, 1911), Euglena mainly orients with respect to light (Diehn et al, 1977; Häder et al, 1981,1986b; Colombetti et al., 1982; Lend et al, 1983) and gravity (Brinkmann, 1968; Häder, 1987a). Recent unpublished experiments failed to demonstrate responses to thermal gradients and the magnetic field of the earth.

Keywords

Movement Vector Fluence Rate Euglena Gracilis Chain Code Acceleration Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bancroft, F. W., 1913, Heliotropism, differential sensibility and galvanotropism in Euglena, J. Exp. Zool., 15:383.CrossRefGoogle Scholar
  2. Batschelet, E., 1965, Statistical methods for the analysis of problems in animal orientation and certain biological rhytms, in: “Animal Orientation and Navigation,” Galles, S. R., Schmidt-Koenig, K., Jacobs, G. J., and Belleville, R. F., eds., Washington, NASA, pp. 61.Google Scholar
  3. Batschelet, E., 1981, “Circular Statistics in Biology,” Academic Press, London.Google Scholar
  4. Benedetti, P. A., and Checcucci, A., 1975 Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis, Plant. Sci. Lett., 4:47.CrossRefGoogle Scholar
  5. Benedetti, P. A., and Lend, F., 1977, In vivo microspectro-fluorometry of photoreceptor pigments in Euglena gracilis, Photochem. Photobiol., 26:315.CrossRefGoogle Scholar
  6. Berg, H. C, 1985, Physics of bacterial chemotaxis. In: “Sensory Perception and Transduction in Aneural Organisms,” Colombetti, G., Lend, F., and Song, P.-S., eds., Plenum Press, New York, London, pp. 19.CrossRefGoogle Scholar
  7. Bound, K. E., and Tollin, G., 1967, Phototactic response of Euglena gracilis to polarizied light, Nature, 216:1042.CrossRefGoogle Scholar
  8. Brinkmann, K., 1968, Keine Geotaxis bei Euglena, Z. Pflanzenphysiol., 59:12.Google Scholar
  9. Buder, J., 1917, Zur Kenntnis der phototaktischen Richtungsbewegungen, lahrb. Wiss. Bot., 58:105.Google Scholar
  10. Checcucci, A., Favati, L., Grassi, S., and Piaggesi, T., 1975, The measurement of phototactic activity in Euglena gracilis, Klebs. Monit. Zool. Ital., 9:83.Google Scholar
  11. Checcucci, A., Colombetti, G., Ferrara, R., and Lenci, F., 1976, Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments, Photochem. Photobiol, 23:51.PubMedCrossRefGoogle Scholar
  12. Colombetti, G., Häder, D.-P., Lenci, F., and Quaglia, M., 1982, Phototaxis in Euglena gracilis: effect of sodium azide and triphenylmethyl phosphonium ion on the photosensory transduction chain, Curr. Microbiol., 7:281.CrossRefGoogle Scholar
  13. Creutz, C., and Diehn, B., 1976, Motor responses to polarized light and gravity sensing in Euglena gracilis, J. Protozool, 23:552.Google Scholar
  14. Diehn, B., 1969, Action spectra of the phototactic responses in Euglena, Biochim. Biophys. Acta, 177:136.PubMedCrossRefGoogle Scholar
  15. Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., and Nultsch, W., 1977, Terminology of behavioral responses of motile microorganisms, Photochem. Photobiol, 26:559.CrossRefGoogle Scholar
  16. Doughty, M. J., and Diehn, B., 1980, Flavins as photoreceptor pigments for behavioral responses, Structure and Bonding, 41:45.CrossRefGoogle Scholar
  17. Doughty, M. J., and Diehn, B., 1982, Photosensory transduction in the flagellated alga, Euglena gracilis, in. Induction of Ca2+-dependent responses by monovalent cation ionophores, Biochim. Biophys. Acta, 682:32.CrossRefGoogle Scholar
  18. Doughty, M. J., and Diehn, B., 1983, Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long term effects of ions and pH on the expression of step-down photobehavior, Arch. Microbiol, 134:204.CrossRefGoogle Scholar
  19. Doughty, M. J., and Diehn, B., 1984, Anion sensitivity of motility and step-down photophobic responses of Euglena gracilis, Arch. Microbiol, 138:329.CrossRefGoogle Scholar
  20. Ekelund, N., and Häder, D.-P., 1988, Photomovement and photobleaching in two Gyrodinium species, Plant Cell Physiol., 29:1109.Google Scholar
  21. Esquivel, D. M. S., and de Barros, H. G. P. L., 1986, Motion of magnetotactic microorganisms, J. Exp. Biol., 121:153.Google Scholar
  22. Frankel, R. B., 1984, Magnetic guidance of organisms, Annu. Rev. Biophys. Bioeng., 13:85.PubMedCrossRefGoogle Scholar
  23. Freeman, H., 1961, On the Encoding of Arbitrary Geometric Configurations, IRE Trans EC-10:260.Google Scholar
  24. Freeman, H., 1974, Computer Processing of Line-Drawing Images, Computing Surveys, 6:57.CrossRefGoogle Scholar
  25. Freeman, H., 1980, “Analysis and Manipulation of Lineal Map Data. Map Data Processing,” Academic Press, pp. 151.Google Scholar
  26. Galland, P., Keiner, P., Dörnemann, D., Senger, H., Brodhun, B., and Häder, D.-P., 1990, Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis, Photochem. Photobiol., 51:675.Google Scholar
  27. Ghetti, F., Colombetti, G., Lenci, F., Campani, E., Polacco, E., and Quaglia, M., 1985, Fluorescence of Euglena gracilis photoreceptor pigment: an in vivo microspectrofluorometric study, Photochem. Photobiol., 42:29.CrossRefGoogle Scholar
  28. Gössel, I., 1957, Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenflecks, Arch. Mikrobiol, 27:288.PubMedCrossRefGoogle Scholar
  29. Gualtieri, P., Barsanti, L., and Rosati, G., 1986, Isolation of the photoreeptor (paraflagellar body) of the phototactic flagellate Euglena gracilis, Arch. Microbiol., 145:303.CrossRefGoogle Scholar
  30. Gualtieri, P., Passarelli, V., and Barsanti, L., 1989, In vivo microspectrophotometric investigation of Blepharisma japonicum, J. Photochem. Photobiol. B: Biol., 3:379.CrossRefGoogle Scholar
  31. Häder, D.-P., 1984, Effects of UV-B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum, Arch. Microbiol., 140:34.CrossRefGoogle Scholar
  32. Häder, D.-P., 1985, Effects of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis, Arch. Microbiol., 141:159.CrossRefGoogle Scholar
  33. Häder, D.-P., 1986, Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis, Photoch. Photobiol., 4:651.CrossRefGoogle Scholar
  34. Häder, D.-P., 1987a, Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis, Arch. Microbiol., 147:179.CrossRefGoogle Scholar
  35. Häder, D.-P., 1987b, Effects of UV-B irradiation on photomovement in the desmid, Cosmarium cucumis, Photochem. Photobiol., 46:121.CrossRefGoogle Scholar
  36. Hader, D.-P., 1988, Ecological consequences of photomovement in microorganisms, J.Photochem. Photobiol BiBiol., 1:385.CrossRefGoogle Scholar
  37. Häder, D.-P., and Brodhun, B. 1990, Photoreceptor proteins and pigments in the paraflagellar body of the flagellate, Euglena gracilis, Photochem. Photobiol., 52:865.CrossRefGoogle Scholar
  38. Häder, D.-P., and Griebenow, K., 1988, Orientation of the green flagellate, Euglena gracilis, in a vertical column of water, FEMS Microbiol Ecol., 53:159.CrossRefGoogle Scholar
  39. Häder, D.-P., and Häder, M. A., 1988a, Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation., Arch. Microbiol., 150:20.CrossRefGoogle Scholar
  40. Häder, D.-P., and Häder, M., 1988b, Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis, Curr. Microbiol., 17:215.CrossRefGoogle Scholar
  41. Häder, D.-P., and Häder, M. A., 1989, Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates, Env. Exp. Bot., 29:273.CrossRefGoogle Scholar
  42. Häder, D.-P., and Lebert, M., 1985, Real time computer-controlled tracking of motile microorganisms, Photochem. Photobiol., 42:509.PubMedCrossRefGoogle Scholar
  43. Häder, D.-P., and Lipson, E., 1986, Fourier analysis of angular distributions for motile microorganisms, Photochem. Photobiol., 44:657.CrossRefGoogle Scholar
  44. Häder, D.-P., and Vogel, K., 1990, Simultaneous tracking of flagellates in real time by image analysis, J. Math. Biol., in press.Google Scholar
  45. Häder, D.-P., Colombetti, G., Lenci, F., and Quaglia, M., 1981, Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch. Microbiol., 130:78.Google Scholar
  46. Häder, D.-P., Lebert, M., and DiLena, M. R., 1986a, New Evidence for the mechanism of phototactic orientation of Euglena gracilis, Current Microbiol., 14:157.CrossRefGoogle Scholar
  47. Häder, D.-P., Watanabe, M., and Furuya, M., 1986b, Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation, Plant Cell Physiol., 27:887.Google Scholar
  48. Häder, D.-P., Rhiel, E., and Wehrmeyer, W., 1987, Phototaxis in the marine flagellate Cryptomonas maculata, J. Photochem. Photobiol., 1:115.CrossRefGoogle Scholar
  49. Hader, D.-P., Rhiel, E., and Wehrmeyer, W., 1988, Ecological consequences of photomovement and photobleaching in the marine flagellate Cryptomonas maculata, FEMS Microbiol. Ecol., 53:9.CrossRefGoogle Scholar
  50. Jennings, H. S., 1904, Reactions to light in ciliates and flagellates, in: “Contributions to the study of the behavior of microorganisms,” Carnegie Inst. Washington, Washington, pp. 29.Google Scholar
  51. Jennings, H. S., 1906, “The behavior of lower organisms,” 1962 edn., Indiana Univ. Press, pp. 134.CrossRefGoogle Scholar
  52. Kivic, P. A., and M. Vesk, 1972, Structure and function in the euglenoid eyespot apparatus: the fine structure, and response to environmental changes, Planta, 105:1.CrossRefGoogle Scholar
  53. Lenci, F., Colombetti, G., and Hader, D.-P., 1983, Role of flavin quenchers and inhibitors in the sensory transduction of the negative phototaxis in the flagellate, Euglena gracilis, Current Microbiol., 9:285.CrossRefGoogle Scholar
  54. MacNab, R. M., 1985, Biochemistry of sensory transduction in bacteria, in: “Sensory Perception and Transduction in Aneural Organisms,” Colombetti, G., Lenci, F., and Song, P.-S. eds., Plenum Press, New York, London, pp. 31.CrossRefGoogle Scholar
  55. Mardia, K. V., 1972, “Statistics of Directional Data,” Academic Press, London.Google Scholar
  56. Mast, S. O., 1911, “Light and Behavior of Organisms,” John Wiley & Sons, New York; Chapman & Hall, London.CrossRefGoogle Scholar
  57. Mast, S. O., 1941, Motor response in unicellular organisms, in: “Protozoa in Biological Research,” Calkins, G. N., and Summer, F. M., eds., Columbia University Press, New York, pp. 271.Google Scholar
  58. Mast, S. O., and Johnson, P. L., 1932, Orientation in light from two sources and its beariang on the function of the eyespot, Z. Vergl Physiol., 16:252.CrossRefGoogle Scholar
  59. Mizuno, T., Maeda, K., and Imae, Y., 1984, Thermosensory transduction in Escherichia coli, in: “Transmembrane Signaling and Sensation,” Oosawa, F., Yoshioka, T., and Hayashi, H., eds., Japan Scientific Society Press, Tokyo and VNU Sci. Press BV, Netherlands, pp. 147.Google Scholar
  60. Nultsch, W., and Agel, G., 1986, Fluence rate and wavelength dependence of photobleaching in the cyanobacterium Anabaena variabilis, Arch. Microbiol., 144:268.CrossRefGoogle Scholar
  61. Nultsch, W., and Häder, D.-P., 1988, Photomovement in motile microorganisms II, Photochem. Photobiol., 47:837.PubMedCrossRefGoogle Scholar
  62. Ofer, S., Nowik, I., Bauminger, E. R., Papaefthymiou, G. C, Frankel, R. B., and Blakemore, R. P., 1984, Magnetosome dynamics in magnetotactic bacteria, J. Biophys., 46:57.CrossRefGoogle Scholar
  63. Poff, K. L., 1985, Temperature sensing in microorganisms, in: “Sensory Perception and Transduction in Aneural Organisms,” Colombetti, G., Lenci, F., and Song, P.-S., eds., Plenum Press, New York, London, pp. 299.CrossRefGoogle Scholar
  64. Preston, K. Jr., 1983, Gray level image processing by cellular logic transforms. IEEE transactions on pattern analysis and machine intelligence, Vol. Pami-5:55.PubMedCrossRefGoogle Scholar
  65. Rhiel, E., Häder, D.-P., and Wehrmeyer, W., 1988a, Photo-orientation in a freshwater Cryptomonas species, J. Photochem. Photobiol B: Biol., 2:123.CrossRefGoogle Scholar
  66. Rhiel, E., Häder, D.-P., and Wehrmeyer, W., 1988b, Diaphototaxis and gravitaxis in a freshwater Cryptomonas, Plant Cell Physiol., 29:755.Google Scholar
  67. Rosenbaum, J. L., and Child, F. M., 1967, Flagellar regeneration in protozoan flagellates, J. Cell Biol., 34:345.PubMedCrossRefGoogle Scholar
  68. Shimmen, T., 1980, Quantitative studies on step-down photophobic responses of Euglena in an individual cell, Protoplasma, 106:37.CrossRefGoogle Scholar
  69. Wolken, J. J., and Shin, E., 1958, Photomotion in Euglena gracilis. I. Photokinesis, II. Phototaxis, J. Protozool., 5:39.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Donat-P. Häder
    • 1
  1. 1.Institut für Botanik und Pharmazeutische BiologieFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations