Advertisement

Effects of Enhanced Solar Ultraviolet Radiation on Aquatic Ecosystems

  • Donat-P. Häder
Part of the NATO ASI Series book series (NSSA, volume 211)

Abstract

The photosynthetic production of organic biomass using solar energy is the almost exclusive source of energy for life on our planet. The amount of carbon in the form of its dioxide incorporated annually into organic molecules exceeds 100 gigatons which can be visualized by the load filling 10 coal trains spanning the distance from the earth to the moon (Häder et al., 1989). However, only about one third of this enormous production is accounted for by terrestrial plants — forests, savannas, crop plants etc. — while the majority is produced by the phytoplankton organisms (primary producers) in aquatic habitats, especially in the world oceans. The marine phytoplankton communities represent by far the largest ecosystem on earth (Schneider, 1989); therefore even a small percentage decrease in the populations would result in enormous losses in the biomass productivity of these organisms, which could have dramatic effects both for the intricate ecosystem itself and for humans, who depend on this system in many ways (Häder et al., 1989).

Keywords

Dictyostelium Discoideum Euglena Gracilis Physarum Polycephalum Solar Ultraviolet Radiation Phytoplankton Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batschelet, E., 1965, Statistical methods for the analysis of problems in animal orientation and certain biological rhytms, in: “Animal Orientation and Navigation,” Galles, S. R., Schmidt-Koenig, K., Jacobs, G. J., and Belleville, R. F., eds., Washington, NASA, pp. 61.Google Scholar
  2. Batschelet, E., 1981, “Circular Statistics in Biology,” Academic Press, London.Google Scholar
  3. Bean, B., 1984, Microbial geotaxis, in: “Membranes and Sensory Transduction,” Colombetti, G., and Lenci, F., eds., Plenum Publishing Corporation, pp. 163.CrossRefGoogle Scholar
  4. Björn, L. O., and Murphy, T. M., 1985, Computer calculation of solar ultraviolet radiation at ground level, Physiol. Vèg.,25:555.Google Scholar
  5. Block, J., Briegleb, W., Sobick, V., and Wohlfarth-Bottermann, K. E., 1986, Confirmation of gravisensitivity in the slime mold Physarum polycephalum under near weightlessness, Adv. Space Res.,6:143.PubMedCrossRefGoogle Scholar
  6. Briegleb, W., and Block, J., 1986, Classification of gravity effects on “free” cells, Adv. Space Res.,6:15.PubMedCrossRefGoogle Scholar
  7. Brinkmann, K., 1968, Keine Geotaxis bei Euglena, Z. Pflanzenphysiol,59:12.Google Scholar
  8. Burns, N. M., and Rosa, F., 1980, In situ measurements of the settling velocity of organic carbon particles and ten species of phytoplankton, Limnol. Oceanogr.,25:855.CrossRefGoogle Scholar
  9. Caldwell, M. M., Madronich, S., Björn, L. O., and Ilyas, M., 1989, Ozone reduction and increased solar ultraviolet radiation, in: “UNEP Environmental Effects Panel Report,” pp. 1.Google Scholar
  10. Diehn, B., 1973, Phototaxis and sensory transduction in Euglena, Science,181:1009.PubMedCrossRefGoogle Scholar
  11. Döhler, G., 1984, Effect of UV-B radiation on the marine diatoms Lauderia annulata and Thalassiosira rotula grown in different salinities, Marine Biology,83:247.CrossRefGoogle Scholar
  12. Döhler, G., 1985, Effect of UV-B radiation (290–320 nm) on the nitrogen metabolism of several marine diatoms, J. Plant Physiol.,118:391.CrossRefGoogle Scholar
  13. Döhler, G., Biermann, I., and Zink, J., 1986, Impact of UV-B radiation on photosynthetic assimilation of 15C-bicarbonate and inorganic 15N-compounds by cyanobacteria, Z. Naturforsch.,41c:426.Google Scholar
  14. Döhler, G., Worrest, R. C, Biermann, I., and Zink, J., 1987, Photosynthetic 14CO2 fixation and 15N-ammonia assimilation during UV-B radiation of Lithodesmium variabile, Physiol. Plantarum,70:511.CrossRefGoogle Scholar
  15. Ekelund, N. G. A., and Björn, L. O., 1990, Ultraviolet radiation stress in dinoflagellates in relation to targets, sensitivity and radiation climate, in: “Proceedings of Workshop,” Scripps Institution of Oceanography, University of California, San Diego La Jolla.Google Scholar
  16. Ford, W. T. Jr., and Deering, R. A., 1979, Survival, spore formation and excision repair of UV-irradiated developing cells of Dictyostelium discoideum NC-4, Photochem. Photobiol.,30:653.PubMedCrossRefGoogle Scholar
  17. Foster, K. W., and Smyth, R. D., 1980, Light antennas in phototactic algae, Microbiol. Rev.,44:572.PubMedGoogle Scholar
  18. Häder, D.-P., 1983a, Inhibition of phototaxis and motility by UV-B irradiation in Dictyostelium discoideum slugs, Plant Cell Physiol.,24:1545.Google Scholar
  19. Häder, D.-P., 1983b, Effects of UV-B irradiation on sorocarp development of Dictyostelium discoideum, Photochem. Photobiol.,38:551.CrossRefGoogle Scholar
  20. Häder, D.-P., 1984, Effects of UV-B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum, Arch. Microbiol.,140:34.CrossRefGoogle Scholar
  21. Häder, D.-P., 1985, Effects of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis, Arch. Microbiol.,141:159.CrossRefGoogle Scholar
  22. Häder, D.-P., 1986, Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis, Photochem. Photobiol.,44:651.CrossRefGoogle Scholar
  23. Häder, D.-P., 1987a, Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis, Arch. Microbiol.,147:179.CrossRefGoogle Scholar
  24. Häder, D.-P., 1987b, Effects of UV-B irradiation on photomovement in the desmid, Cosmarium cucumis, Photochem. Photobiol.,46:121.CrossRefGoogle Scholar
  25. Häder, D.-P., 1988, Ecological consequences of photomovement in microorganisms, J. Photochem. Photobiol B: Biol.,1:385.CrossRefGoogle Scholar
  26. Häder, D.-P., and Griebenow, K., 1987, Versatile digital image analysis by microcomputer to count microorganisms, EDV Med. Biol,18:37.Google Scholar
  27. Häder, D.-P., and Griebenow, K., 1988, Orientation of the green flagellate, Euglena gracilis,in a vertical column of water, FEMS Microbiol Ecol.,53:159.CrossRefGoogle Scholar
  28. Häder, D.-P., and Häder, M. A., 1988a, Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis,by UV-B radiation, Arch. Microbiol.,150:20.CrossRefGoogle Scholar
  29. Häder, D.-P., and Häder, M., 1988b, Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis, Current Microbiol.,17:215.CrossRefGoogle Scholar
  30. Häder, D.-P., and Häder, M., 1989a, Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates, Em. Exp. Bot.,29:273.CrossRefGoogle Scholar
  31. Häder, D.-P., and Häder, M., 1989b, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Cryptomonas, Botanica Acta,102:236.Google Scholar
  32. Häder, D.-P., and Häder, M., 1989c, Effects of solar radiation on development in the cellular slime mold, Dictyostelium discoideum, Photochem. Photobiol.,50:557.CrossRefGoogle Scholar
  33. Häder, D.-P., and Häder, M., 1990a, Effects of solar and artificial UV radiation on motility and pigmentation in the marine Cryptomonas maculata, J. Photochem. Photobiol.,5:105.CrossRefGoogle Scholar
  34. Häder, D.-P., and Häder, M., 1990b, Effects of solar radiation on motility, photomovement and pigmentation in two strains of the cyanobacterium, Phormidium uncinatum, Acta Protozool.,in press.Google Scholar
  35. Häder, D.-P., Häder, M., Liu, S.-M., and Ullrich, W., 1990, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Peridinium, BioSystems,23:335.CrossRefGoogle Scholar
  36. Häder, D.-P., and Liu, S.-M., 1990a, Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense, FEMS Microbiol. Ecol.,73:331.CrossRefGoogle Scholar
  37. Häder, D.-P., and Liu, S.-M., 1990b, Motility and gravitatic orientation of the flagellate, Euglena gracilis impaired by artifical and solar UV-B radiation, Curr. Microbiol.,21:161.PubMedCrossRefGoogle Scholar
  38. Häder, D.-P., Watanabe, M., and Furuya, M., 1986, Inhibition of motility in the cyanobacterium, Phormidium uncinatum,by solar and monochromatic UV irradiation, Plant Cell Physiol.,27:887.Google Scholar
  39. Häder, D.-P., Worrest, R. C, and Kumar, H. D., 1989, Aquatic ecosystems, in: “UNEP Environmental Effects Panel Report,” 39.Google Scholar
  40. Halldal, P., 1963, Zur Frage des Photoreceptors bei der Topophototaxis der Flagellaten, Ber. Dtsch. Bot. Ges.,76:323.Google Scholar
  41. Halldal, P., 1964, Ultraviolet action spectrum of photosynthesis and photosynthetic inhibition in a green and a red alga, Physiol. Plant.,17:414.CrossRefGoogle Scholar
  42. Haupt, W., 1959, Die Phototaxis der Algen, in: “Handbuch der Pflanzenphysiologie,” vol. XVII, 1, Ruhland, W., ed., Springer-Verlag Berlin, Gottingen, Heidelberg, pp. 318.Google Scholar
  43. Haupt, W., 1965, Perception of environmental stimuli orienting growth and movement in lower plants, Ann. Rev. Plant Physiol.,16:267.CrossRefGoogle Scholar
  44. Hirosawa, T., and Miyachi, S., 1983, Inactivation of Hill reaction by long-wavelength ultraviolet radiation (UV-A) and its photoreactivation by visible light in the cyanobacterium, Anacystis nidulans, Arch. Microbiol.,135:98.CrossRefGoogle Scholar
  45. Ito, T., 1983, Photodynamic agents as tools for cell biology, in: “Photochemical and Photobiological Reviews,” Vol. 7, Smith, K. G., ed., Plenum, New York, pp. 141.Google Scholar
  46. Jagger, J., 1983, Effects of near-UV radiation on bacteria, in: “Photochemical and Photobiological Reviews,” Smith, K. C., ed., Plenum, New York, pp. 1.Google Scholar
  47. Jeffrey, S. W., and Humphrey, G. F., 1975, New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol Pflanzen,167:191.Google Scholar
  48. Jensen, P., 1893, Über den Geotropismus niederer Organismen, Pfüger’s Arch, ges. Phys.,53:428.CrossRefGoogle Scholar
  49. Jerlov, N. G., 1970, Light - general introduction, in: “Marine Ecology,” Vol. 1, Kinne, O., ed., pp. 95.Google Scholar
  50. Kelly, J. R., 1986, How might enhanced levels of solar UV-B radiation affect marine ecosystems? in: “Proceedings of EPA/UNEP International Conference on Health and Environmental Effects of Ozone Modification and Climate Change,” July, 1986.Google Scholar
  51. Kessler, J. O., 1986, The external dynamics of swimming microorganisms, in: “Progress in Phycological Research,” vol. 4, Round, F. E., and Chapman, D. J., eds., Biopress Ltd. Bristol, pp. 258.Google Scholar
  52. Kuroda, K., Kamiya, N. M. J. A., Yoshimoto, Y., and Hiramoto, Y., 1986, Paramecium behavior during video centrifuge-micrscopy, Proc. Japan. Cad. Ser. B, 62:117.CrossRefGoogle Scholar
  53. Madronich, S., Frederick, J., Brasseur, G., and Caldwell, M. M., 1989, Predicted changes in surface UV radiation, in: “UNEP Atmospheric Sciences Panel Report.”Google Scholar
  54. Mardia, K. V., 1972, “Statistics of Directional Data,” Acad. Press, London.Google Scholar
  55. Maurette, M.-T., Oliveros, E., Infelta, P. P., Ramsteiner, K., and Braun, A. M., 1983, Singlet oxgen and superoxide: experimental differentiation and analysis, Helv. Chim. Acta,66:722.CrossRefGoogle Scholar
  56. Mitchell, B. G., 1990, Action spectra of ultraviolet photoinhibition of Antarctic phytoplankton and a model of spectral diffuse attenuation coefficients, in: “Proceedings of Workshop,” Scripps Institution of Oceanography, University of California, San Diego La Jolla.Google Scholar
  57. Nixon, S. W., 1988, Physical energy inputs and the comparative ecology of lake and marine ecosystems, Limnol Oceanogr.,33:1005.CrossRefGoogle Scholar
  58. Nultsch, W., 1974, Movements, in: “Algal Physiology and Biochemistry,” Stewart, W. D. P., ed., Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne, pp. 864.Google Scholar
  59. Nultsch, W., and Agel, G., 1986, Fluence rate and wavelength dependence of photobleaching in the cyanobacterium Anabaena variabilis, Arch. Microbiol.,144:268.CrossRefGoogle Scholar
  60. Nultsch, W., Häder, D.-P., 1979, Photomovement of motile microorganisms. Photochem. Photobiol. 29:423.Google Scholar
  61. Nultsch, W., and Häder, D.-P., 1988, Photomovement in motile microorganisms II, Photochem. Photobiol.,47:837.PubMedCrossRefGoogle Scholar
  62. Ohnishi, T., and Nozu, K., 1979, Ultraviolet effects on killing, fruiting body formation and the spores of Dictyostelium discoideum, Photochem. Photobiol.,29:615.PubMedCrossRefGoogle Scholar
  63. Ohnishi, T., Hazama, M., Okaichi, K., and Nozu, K., 1982, Formation of non-viable spores of Dictyostelium discoideum by UV-irradiation and caffeine, Photochem. Photobiol.,36:355.CrossRefGoogle Scholar
  64. Schneider, S. H., 1989, The changing climate, Sci. Am.,261:38.CrossRefGoogle Scholar
  65. Schreiber, U., Neubauer, C, and Klughammer, C, 1989, Devices and methods for room-temperature fluorescence analysis, Phil Trans. R. Soc. Lond. B,323:241.CrossRefGoogle Scholar
  66. Smith, R. C, 1989, Ozone, middle ultraviolet radiation and the aquatic environment, Photochem. Photoboil.,50:459.CrossRefGoogle Scholar
  67. Spikes, J. D., 1977, Photosensitization, in: “The Science of Photobiology,” Smith, K. C., ed., Plenum, New York, pp. 87.Google Scholar
  68. Spikes, J. D., and Straight, R., 1981, The sensitized photooxidation of bimolecules, an overview., in: “Oxygen and Oxyradicals in Chemistry and Biology,” Rodgers, M. A. J., and Powers, E. L., eds., Academic Press, New York, pp. 421.Google Scholar
  69. Stolarski, R. S., 1988, The antarctic ozone hole, Sci. Am.,258:20.CrossRefGoogle Scholar
  70. Taneda, K., Miyata, S., and Shiota, A., 1987, Geotactic behavior in Paramecium caudatum. II. Geotaxis assay in a population of the specimens, Zool Sci.,4:789.Google Scholar
  71. Tevini, M., Braun, J., Grusemann, P., and Ros, J., 1989a, UV-Wirkungen auf Nutzpflanzen, Laufener Sem. Beitr.,3:38.Google Scholar
  72. Tevini, M., Teramura, A. H., Kulandaivelu, G., Caldwell, M. M., and Björn, L. O., 1989b, Terrestrial plants, in: “UNEP Environmental Effects Panel Report”.Google Scholar
  73. USEPA (U. S. Environmental Protection Agency), 1987, An assessment of the effects of ultraviolet-B radiation on aquatic organisms, in: “Assessing the Risks of Trace Gases That Can Modify the Stratosphere,” EPA 400/1-87/001C, pp. (12)1.Google Scholar
  74. van der Leun, J. C, 1989, Human health, in: “UNEP Environmenal Effects Panel Report”.Google Scholar
  75. Walsby, A. E., 1968, Mucilage secretion and the movements of blue-green algae, Protoplasma,65:223.CrossRefGoogle Scholar
  76. Wolke, A., Niemeyer, F., and Achenbach, F., 1987, Geotactic behavior of the acellular myxomycete Physarum pofycephalum, Ceil. Biol. Inter. Rep.,11:525.CrossRefGoogle Scholar
  77. Worrest, R. C, 1982, Review of literature concerning the impact of UV-B radiation upon marine organisms, in: “The Role of Solar Ultraviolet Radiation in Marine Ecosystems,” Calkins, J., ed., Plenum Publishing Corp., pp. 429.Google Scholar
  78. Yammamoto, K. M., Satake, M., Shinagawa, H., and Fujiwara, Y., 1983, Amelioration of the ultraviolet sensitivity of an Escherichia coli recA mutant in the dark by photoreactivating enzyme, Mol. Gen. Genet.,190:511.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Donat-P. Häder
    • 1
  1. 1.Institut für Botanik und Pharmazeutische BiologieFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations