Application of Laser Flash Photolysis to Study Photoreceptor Pigments

  • Suppiah Navaratnam
  • Glyn O. Phillips
Part of the NATO ASI Series book series (NSSA, volume 211)


In any photobiological process, the initial step is the absorption of a photon by the receptor pigment, which can transform it into the excited singlet state. This state can undergo a number of processes such as internal conversion to the ground state, photochemical reactions (e.g. isomerisation in rhodopsin, charge separation in chlorophyll), intersystem crossing to the triplet state, etc. The triplet, in turn, can also undergo comparable reactions. Thus a knowledge of the reactivities of excited states is necessary to understand the primary processes of pigments on exposure to light. Such processes can conveniently be studied using flash photolysis, a technique devised and developed by Norrish and Porter (1949), Porter (1950, 1963) and Norrish (1965) to study the absorption spectra and reaction kinetics of triplet states and other transient species.


Triplet State Flash Photolysis Euglena Gracilis Transient Species Laser Flash Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amouyal, E., Bensasson, R., and Land, E. J., 1974, Triplet states of ubiquinone analogs studied by ultra violet and electron nanosecond irradiation, Photochem. Photobiol., 20:415.CrossRefGoogle Scholar
  2. Atherton, S. J., Hubig, S. M., Callan, T. J., Duncanson, J. A., Snowden, P. T., and Rodgers, M. A. J, 1987, Photoinduced charge separation in a micelle-induced charge-transfer complex between methylviologen and ethidium ions. A picosecond absorption spectroscopy study, J. Phys. Chem., 91:3137.CrossRefGoogle Scholar
  3. Beck, G., 1969, Elektrische Leitfähigkeitsmessungen zum Nachweis geladener Zwischenprodukte der Pulsradiolyse, Int. J. Radiat. Phys. Chem., 1:361.CrossRefGoogle Scholar
  4. Bensasson, R., Goldschmidt, C. R., Land, E. J., and Truscott, T. G., 1978, Laser intensity and the comparative method for determination of triplet quantum yields, Photochem. Photobiol., 28:277.CrossRefGoogle Scholar
  5. Birge, R. R., 1990, Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin, Biochim. Biophys. Acta, 1016:293.PubMedCrossRefGoogle Scholar
  6. Buchert, J., Stefancic, V., Doukas, A. G., Alfano, R. R., Callender, R. H., Pande, J., Akita, H., Balogh-Nair, V. and Nkanishi, K., 1983, Picosecond kinetic absorption and fluorescence study of bovine rhodopsin with a fixed 11-ene, Biophys. J., 43:279.PubMedCrossRefGoogle Scholar
  7. Boag, J. W., 1968 Techniques of flash photolysis, Photochem. Photobiol., 8:565.PubMedCrossRefGoogle Scholar
  8. Capellos, C., and Bielski, B. H. J., 1980, “Kinetic Systems”, Krieger, Huntinton, N.Y.Google Scholar
  9. Carmichael, I., and Hug, G. L., 1983, A note on the total depletion method of measuring extinction coefficients of triplet-triplet transitions, J. Phys. Chem., 89:4036.CrossRefGoogle Scholar
  10. Durrant, J. R., Giorgi, L. B., Barber, J., Klug, D. R., and Porter, G., 1990, Characterisation of triplet states in isolated Photosystem II reaction centres: oxygen quenching as a mechanism for photodamage, Biochim. Biophys. Acta, 1017:167.CrossRefGoogle Scholar
  11. Fork, R. L., Greene, B. I., and Shank, C. V., 1981, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett., 38:671.CrossRefGoogle Scholar
  12. Hadley, S. G., and Keller, R. A., 1969, Direct determination of the extinction coefficient for triplet-triplet transitions in naphthalene, phenanthrene and triphenylene, J. Phys. Chem., 73:4351.CrossRefGoogle Scholar
  13. Heelis, D. V., Heelis, P. F., Bradshaw, F., and Phillips, G. O., 1981, Does the stigma of Euglena gracilis play an active role in the photoreception processes of this organism? A photochemical investigation of isolated stigma, Photobiochem. Photobiophys., 3:77.Google Scholar
  14. Heelis, P. F., 1982, The photophysical and photochemical properties of flavins (isoalloxazines), Chem. Soc. Rev., 11:15.CrossRefGoogle Scholar
  15. Heelis, P. F., Parsons, B. J., Thomas, B., and Phillips, G. O., 1985, One electron oxidation of the flavin triplet state as studied by laser flash photolysis, J. Chem. Soc. Chem. Commun., 954.Google Scholar
  16. Heelis, P. F., and Phillips, G. O., 1985, A laser flash photolysis study of the triplet states of lumichromes, J. Phys. Chem., 89:770.CrossRefGoogle Scholar
  17. Hoff, A. J., 1979, Applications of ESR in photosynthesis, Phys. Reports 54:75.CrossRefGoogle Scholar
  18. Kramer, H., and Mathis, P, Quantum yield and rate of formation of the carotenoid triplet state in photosyntheic structures, Biochim. Biophys. Acta, 593:319.Google Scholar
  19. Lenci, F., Ghetti, F., Gioffre, D., Passarelli, V., Heelis, P. F., Thomas, B., Phillips, G. O., and Song, P-S., 1989, Effects of the molecular environment on some spectroscopic properties of Blepharisma photoreceptor pigment, J. Photochem. Photobiol. B: Biology, 3:449.PubMedCrossRefGoogle Scholar
  20. Mathis, P., and Setif, P., 1981, Near infra-red absorption spectra of the chlorophyll a cations and the triplet state in vitro and in vivo, Israel J. Chem., 21:316.Google Scholar
  21. Navaratnam, S., Hughes, J. L., Parsons, B. J. and Phillips, G. O., 1985, Laser flash photolysis and steady-state photolysis of benoxaprofen in aqueous solution, Photochem. Photobiol, 41:375.CrossRefGoogle Scholar
  22. Nitsch, C., Braslavsky, S. E., and Schatz, G. H., 1988, Laser induced optoacoustic calorimetry of primary processes in isolated Photosystem I and Photosystem II particles, Biochim. Biophys. Acta, 934:201.CrossRefGoogle Scholar
  23. Norrish, R. W. G., and Porter, G., 1949, Chemical reactions produced by very high light intensities, Nature, 164:658.CrossRefGoogle Scholar
  24. Norrish, R. W. G., 1965, The kinetics and analysis of very fast chemical reactions, Chem. Britain, 1:289.Google Scholar
  25. Pavlopoulos, T. G., 1973, Measurement of molar extinction coefficients of organic molecules by means of cw laser excitation, J. Opt. Soc. Am., 63:180.CrossRefGoogle Scholar
  26. Phillips, D., Moore, J. N. and Hester, R. E., 1986, Time-resolved resonance Raman spectroscopy applied to anthraquinone photochemistry, J. Chem. Soc. Faraday Trans. II 82:2093.CrossRefGoogle Scholar
  27. Porter, G., 1950, Flash photolysis and spectroscopy: A new method for the study of free radical reactions, Proc. Roy. Soc., A, 200:284.CrossRefGoogle Scholar
  28. Porter, G., 1963, in “Technique of Organic Chemistry,” Wessberger, A., ed., chapter 19, Wiley Interscience, New York, pp. 1055.Google Scholar
  29. Rodgers, M. A. J., 1985, Instrumentation for the generation and detection of transient species, in “Primary Photo-Processes in Biology and Medicine,” Bensasson, R. V., Jori, G., Land, E. J., and Truscott, T. G., eds., Plenum Press, New York.Google Scholar
  30. Shank, C. V., Fork, R. L., Yen, R., Stolen, R. H., and Tomlinson, W. J., 1982, Compression of femtosecond optical pulses, Appl. Phys. Lett., 40:761.CrossRefGoogle Scholar
  31. Wilkinson, F., 1986, Diffuse reflectance flash photolysis, J. Chem. Soc. Faraday Trans., 82:2073.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Suppiah Navaratnam
    • 1
  • Glyn O. Phillips
    • 1
  1. 1.The North East Wales InstituteDeeside, ClwydWales, UK

Personalised recommendations