Characterization of Senescent Red Cells from the Rabbit

  • George L. Dale
  • Robert B. Daniels
  • Joshua Beckman
  • Shannon L. Norenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


The mammalian erythrocyte survives a multitude of insults during its circulating lifespan including oxidant attack, calcium influxes, repeated deformation and glycation among others (1). Nevertheless, the majority of red cells survive and apparently function well for the entire pre-programmed time period which represents their lifespan. Neither the mechanism which determines the time frame of the lifespan nor the signal that triggers the removal of the senescent cell by macrophages is known (1). The lack of knowledge concerning this fundamental biological process can clearly be attributed to a single underlying problem, the difficulty of reliably isolating aged red cells (2). The majority of investigators in this field have utilized a variety of physical techniques for isolating aged cells (1) based upon assumptions as to changes which may occur with red cell aging, for example, an increase in cellular density. As a result, there have been literally thousands of reports documenting the changes in red cell properties as a function of cellular density with the assumption that these findings reflect changes with age. It has now, however, become increasingly clear that density fractionation is not capable of producing a sufficiently pure population of aged erythrocytes to allow any biochemical characterization of age-dependent changes (3–6).


Paroxysmal Nocturnal Hemoglobinuria Rabbit Erythrocyte Scripps Clinic Aged Erythrocyte Senescent Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Clark, Senescence of Red Blood Cells, Progress and Problems. Physiol. Rev. 68:503 (1988).Google Scholar
  2. 2.
    E. Beutler, Isolation of the aged, Blood Cells 14:1 (1988).PubMedGoogle Scholar
  3. 3.
    M. Morrison, C. W. Jackson, T. J. Mueller, T. Huang, M. E. Docktor, W. W. S. Walker, J. A. Singer, and H. H. Edwards, Does red cell density-correlate with red cell age, Biomed. Biochim. Acta 42:107 (1983).Google Scholar
  4. 4.
    M. R. Clark, L. Corash, and R. H. Jensen, Density distribution of aging, transfused human red cells, Blood 74:217A (1989).Google Scholar
  5. 5.
    G. L. Dale and S. L. Norenberg, Density fractionation of rabbit erythrocytes results in only a slight enrichment for aged cells, Biochim. Biophys Acta, in press (1990).Google Scholar
  6. 6.
    M. G. Luthra, J. M. Friedman, and D. A. Sears, Studies of density fractions of normal human erythrocytes labeled with iron-59 in vivo, J. Lab. Clin. Med. 94:879 (1979).PubMedGoogle Scholar
  7. 7.
    A. M. Ganzoni, R. Oakes, and R. S. Hillman, Red cell ageing in vivo, J. Clin. Invest. 50:1373 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    E. Beutler and G. Hartman, Age-related red cell enzymes in children with transient erythroblastopenia of childhood and with hemolytic anemia, Pediatr. Res. 19:44 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Suzuki and G. L. Dale, Biotinylated erythrocytes: In vivo survival and in vitro recovery, Blood 70:791 (1987).PubMedGoogle Scholar
  10. 10.
    T. Suzuki and G. L. Dale, Senescent erythrocytes: The isolation of in vivo aged cells and their biochemical characteristics, Proc. Natl. Acad. Sci. USA 85:1647 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    G. L. Dale and S. L. Noremberg, Time-dependent loss of adenosine 5′-monophosphate deaminase activity may explain elevated adenosine 5′-triphosphate levels in senescent erythrocytes, Blood 74:2157 (1989).PubMedGoogle Scholar
  12. 12.
    A. M. Ganzoni, J. P. Barras, and H. R. Marti, Red cell ageing and death Vox Sang. 30:161 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    D. E. Paglia, W. N. Valentine, M. Nakatani, and R. A. Brockway, AMP deaminase as a cell-age marker in transient erythroblastopenia of childhood and its role in the adenylate economy of erythrocytes, Blood 74:2161 (1989).PubMedGoogle Scholar
  14. 14.
    T. Suzuki and G. L. Dale, Membrane proteins in senescent erythrocytes, Biochem. J. 257:37 (1989).PubMedGoogle Scholar
  15. 15.
    T. J. Mueller, C. W. Jackson, M. E. Docktor, and M. Morrison, Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the Band 4.1a:4.1b ratio, J. Clin. Invest. 79:492 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    E. Beutler, in Red Cell Metabolism, A Manual of Biochemical Methods, New York, Grune and Stratton, 1983.Google Scholar
  17. 17.
    G. L. Dale, Radioisotopic assay for erythrocyte adenosine 5′-monophosphate deaminase, Clin. Chim. Acta 182:1 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    J. D. Torrance, D. Whittaker, and E. Beutler, Purification and properties of human erythrocyte pyrimidine 5′-nucleotidase, Proc. Natl. Acad. Sci. USA 74:3701 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Bontemps, G. Van den Berghe, and H. G. Hers, Pathways of adenine nucleotide catabolism in erythrocytes, J. Clin. Invest. 77:824 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    F. L. Meyskens and H. E. Williams, Adenosine metabolism in human erythrocytes, Biochim. Biophys. Acta 240:170 (1971).PubMedGoogle Scholar
  21. 21.
    N. Ogasawara H. Goto, Y. Yamada, I. Nishigaki, T. Itoh, and I. Hasegawa, Complete deficiency of AMP deaminase in human erythrocytes, Biochem. Biophys. Res. Commun. 122:1344 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    M. M. B. Kay, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72:3521 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    J. A. Singer, L. K. Jennings, C. W. Jackson, M. E. Dockter, M. Morrison, and W. S. Walker, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83:5498 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    H. U. Lutz, S. Fasler, P. Stammler, F. Bussolino, and P. Arese, Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in the clearance of senescent red cells, Blood Cells 14:175 (1988).PubMedGoogle Scholar
  25. 25.
    M. Magnani, S. Papa, L. Rossi, M. Vitale, G. Fornaini, and F. A. Manzoli, Membrane-bound immunoglobulins increase during red blood cell aging, Acta Haematol. 79:127 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    W. F. Rosse, Quantitative immunology of immune hemolytic anemia. II. The relationship of cell-bound antibody to hemolysis and the effect of treatment, J. Clin. Invest. 50:734 (1971).PubMedCrossRefGoogle Scholar
  27. 27.
    B. Zuppanska, E. Thompson, E. Brojer, and A. H. Merry, Phagocytosis of erythrocytes sensitized with known amounts of IgGl and IgG3 anti-Rh antibodies, Vox Sang. 53:96 (1987).CrossRefGoogle Scholar
  28. 28.
    M. O. Jeje, M. A. Blajchman, K. Steeves, P. Horsewood, and J. G. Kelton, Quantitation of red cell associated IgG using an immunoradiometric assay, Transfusion 24:473 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    G. L. Dale, S. L. Norenberg, and R. B. Daniels, Phospholipid and cholesterol content of senescent erythrocytes, submitted.Google Scholar
  30. 30.
    W. F. Rosse, Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria, Blood 75:1595 (1990).PubMedGoogle Scholar
  31. 31.
    E. Kamber, A. Poyiagi, and G. Deliconstantinos, Modifications in the activities of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes, Comp. Biochem. Physiol. 77B:95 (1984).Google Scholar
  32. 32.
    G. L. Dale and N. Mohandas, manuscript in preparation.Google Scholar
  33. 33.
    Y. Ravindranath, F. Brohn, and R. M. Johnson, Erythrocyte age-dependent change of membrane protein 4.1: Studies in transient erythroblastopenia, Pediatr. Res. 21:275 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    This is publication number 6506-MEM from the Research Institute of Scripps Clinic. Partial support was provided by grant AG 08545 from the National Institutes of Health.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • George L. Dale
    • 1
  • Robert B. Daniels
    • 1
  • Joshua Beckman
    • 1
  • Shannon L. Norenberg
    • 1
  1. 1.Department of Molecular and Experimental MedicineResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations