Advertisement

Selective Binding of Met-Hemoglobin to Erythrocytic Membrane: A Possible Involvement in Red Blood Cell Aging

  • Bruno Giardina
  • Roberto Scatena
  • Maria E. Clementi
  • Maria T. Ramacci
  • Franco Maccari
  • Loredana Cerroni
  • Saverio G. Condò
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)

Abstract

It is well known that in vivo and under normal physiological conditions intraerythrocytic hemoglobin may exist in three different forms represented by oxygenated, deoxygenated and partially oxidized hemoglobin (1–4). Apart from the first two derivatives whose relative proportions are continuously changing during the oxygenation deoxygenation cycle, met-hemoglobin is normally present at a steady-state level of about 1%.

Keywords

G6PD Deficiency Human Hemoglobin Hemoglobin Solution Hemoglobin Molecule Progressive Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Antonini and M. Brunori, “Hemoglobin and myoglobin in their reactions with ligands”, A. Neuberger and E. L. Tatum, North-Holland Publ. Co., Amsterdam (1971).Google Scholar
  2. 2.
    M. F. Perutz, Species adaption in a protein molecule, Mol. Biol. Evol. 1:1 (1983).PubMedGoogle Scholar
  3. 3.
    A. F. Riggs, The Bohr effect, Ann. Rev. Physiol. 50:181 (1988).CrossRefGoogle Scholar
  4. 4.
    A. Tomoda, M. Takeshita and Y. Yoneyama, Analysis of met-form hemoglobin in glucose-depleted human red cells, FEBS lett. 88:247 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Devogel, J. Leonis and J. Vincetelli, The alteration of the functional properties of human hemoglobin by spectrin, Experientia 33:1429 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Chetrite and R. Cassoly, Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3, J. Mol. Biol. 185:639 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    B. R. Premachandra, Interaction of hemoglobin and its component alfa and beta chains with band 3 protein, Biochemistry 25:3455 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    I. Lebbar, F. Stetzkowski-Marden, O. Mauffret and R. Cassoly, Interactions of actin and tubulin with human deoxyhemoglobin, Eur. J. Biochem. 170:273 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    C. E. Moya, S. Shah and T. M. Sodeman, The erythrocyte, in: “Sodeman’s Pathologic Physiology”, 7th edition W. B. Saunders, Baltimore (1985).Google Scholar
  10. 10.
    P. S. Low, S. M. Waugh, K. Zinke and D. Drenckhahn, The Role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227:531 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    P. S. Low, Structure and function of the cytoplasmic domain of band 3: center of erythrocytes membrane-peripheral protein interactions, Biochim. Biophys. Acta 864:145 (1986).PubMedGoogle Scholar
  12. 12.
    S. M. Waugh, J. A. Walder and P. S. Low, Partial characterization of the copolymerization reaction of erythrocyte membrane band 3 with hemichromes, Biochemistry 26:1777 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Bucci and C. Fronticelli, A new method for the preparation of α and P subunits of human hemoglobin, J. Biol. Chem. 240:PC551 (1965).PubMedGoogle Scholar
  14. 14.
    A. Tsuneshige, K. Imai and I. Tyuma, The binding of hemoglobin to red cell membrane lowers its oxygen affinity, J. Biochem. 101:695 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Scatena, S. G. Condò, M. E. Clementi, M. Corda, M. T. Sanna, M. G. Pellegrini and B. Giardina, Methemoglobin and enzymatic reduction systems: physiological and pathological implications, Ital. J. Biochem. (1990) in press.Google Scholar
  16. 16.
    M. Sharabani, B. Plotkin and I. Aviram, Lipid peroxidation in red blood cell membranes, Cell. Molec. Biol 30:329 (1984).Google Scholar
  17. 17.
    A. Mansouri and K. H. Winterhalter, Non equivalence of chains in hemoglobin oxidation and oxygen binding, Biochemistry 13:3311 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Takeshita, M. Tamura, T. Yubisui and Y. Yoneyama, Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content, J. Biochem. 93:931 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Hegesh, J. H. Hegesh and A. Kaftory, Congenital methemoglobinemia with a deficiency of cytochrome b5, N. Engl. J. Med. 314:757 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Rice-Evan and E. Baysal, Iron-mediated oxidative stress in erythrocytes, Biochem. J. 244:191 (1987).Google Scholar
  21. 21.
    M. R. Clark, Senescence of red blood cells: progress and problems, Physiol. Rev. 68:503 (1988).PubMedGoogle Scholar
  22. 22.
    T. Suzuki and G. L. Dale, Membrane proteins in senescent erythrocytes, Biochem. J. 257:37 (1989).PubMedGoogle Scholar
  23. 23.
    L. M. Snyder, L. Leb, J. Piotrowski, N. Sauberman, S. C. Liu and N. L. Fortier, Irreversible spectrin-hemoglobin crosslinking in vivo: a marker for red cell senescence, Bri. J. Haematol. 53:379 (1983).CrossRefGoogle Scholar
  24. 24.
    N. Shaklai, B. Frayman, N. Fortier and M. Snyder, Crosslinking of isolated cytoskeletal proteins with hemoglobin: a possible damage inflicted to the red cell membrane, Biochim. Biophys. Acta 915:406 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bruno Giardina
    • 1
  • Roberto Scatena
    • 1
  • Maria E. Clementi
    • 1
  • Maria T. Ramacci
    • 2
  • Franco Maccari
    • 2
  • Loredana Cerroni
    • 1
  • Saverio G. Condò
    • 1
  1. 1.Dipartimento di Medicina Sperimentale e ScienzeBiochimiche II Università di RomaRomaItaly
  2. 2.Istituto di Ricerca sulla SenescenzaSigma Tau, PomeziaItaly

Personalised recommendations